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In this Issue 
Handheld calculator designs always seem to require the expert application 

of  a broader var iety of  d isc ip l ines than other product  designs.  Perhaps i t 's  
the chal lenge of  bu i ld ing more and more capabi l i ty  in to a severe ly  l imi ted 
volume. In this respect,  this month's subjects, the HP-18C Business Consul 
tant typical.  the HP-28C Scienti f ic Professional Calculator, are typical.  Their 
design firmware has interesting aspects not only in circuit design and firmware 
deve lopment ,  bu t  a lso  in  mater ia ls ,  packag ing,  opera t ing  sys tem des ign,  
algor i thms, user interface design, display technology, and ergonomics. 

The f i rs t  th ing you not ice is  the package. Users d idn' t  l ike keys that  had 
three d i f ferent  labels,  so the designers added more keys,  and the package opens to reveal  two 
keyboards side by side. How do you rel iably connect the two halves of  the electronics through a 
rotat ing hinge? See the mechanical  design paper on page 17. Business users want to customize 
their calculators without programming, so the HP-18C has softkey menus and the Solve interface, 
which lets  you type in an equat ion a lgebraical ly  us ing any convenient  var iable names and then 
solve (page an unknown variable by pressing the softkey labeled with its name (page 4). While the 
HP-1 8C scientific algebraic, the HP-28C still uses RPN, the programming language of earlier HP scientific 
ca lcu la tors ,  but  the  language has been ex tended to  inc lude symbol ic  ent ry  o f  var iab les  and a  
var ie ty  new data types (page 11) .  Behind these advanced features of  both calcu lators is  a new 
operat ing system developed especial ly for handheld calculators. Cal led RPL, i t  has similar i t ies to 
both Lisp and Forth (page 21).  For solv ing equat ions, the i terat ive solver of  ear l ier  HP scient i f ic  
ca lcu la tors  has been augmented wi th  a d i rect  so lver  and implemented in  both the HP-18C and 
the HP-28C. The solver f i rst  t r ies to solve a user 's equat ion by algebraic operat ions. I f  i t  can' t ,  i t  
uses tr ial-and-error methods (page 30). 

You'l l  pages the electronic design of these new calculators described in the papers on pages 25 
and 34. printer a future issue, we'll have papers on the calculators' accessory printer and its infrared 
interface, and on the manufactur ing process. 

-R.  P.  Do/an 

What's Ahead 
Next  Prec is ion issue is  another  in  our  ser ies  devoted to  the new HP Prec is ion Arch i tec ture .  

Three papers  w i l l  descr ibe  the  des ign  and deve lopment  o f  the  processor  ch ip  se t  fo r  the  f i rs t  
VLSI  implementat ion of  the archi tecture,  and two papers wi l l  descr ibe system processing uni ts  
that  use th is  ch ip  set .  One of  the SPUs is  for  the HP 9000 Model  850 and HP 3000 Ser ies 950 
Computers,  and the other  is  for  the HP 9000 Model  825.  

T h e  H P  J o u r n a l  L e t t e r s  t e c h n i c a l  d i s c u s s i o n  o f  t h e  t o p i c s  p r e s e n t e d  i n  r e c e n t  a r t i c l e s  a n d  w i l t  p u b l i s h  l e t t e r s  e x p e c t e d  t o  b e  o f  i n t e r e s t  t o  o u r  r e a d e r s .  L e t t e r s  m u s t  b e  b r i e f  a n d  a r e  s u b j e c t  
t o  e d i t i n g  9 4 3 0 4 ,  s h o u l d  b e  a d d r e s s e d  t o :  E d i t o r ,  H e w l e t t - P a c k a r d  J o u r n a l ,  3 2 0 0  H i l l v i e w  A v e n u e ,  P a l o  A l t o ,  C A  9 4 3 0 4 ,  U . S . A .  
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A Handheld Business Consultant 
The latest  model  in  HP's l ine of  calculators designed for  
business and f inancial applications features a menu-driven 
user interface for selecting any of its many built-in functions 
or  custom equat ions entered by the user .  

by Susan L.  Wechsler  

HP'S BUSINESS CONSULTANT (Fig. 1) is an ad 
vanced handheld calculator that combines many of 
the most popular features of the earlier HP-12C with 

enhancements such as a menu-driven user interface, cus 
tomization without programming, a four-line dot-matrix 
display, and an infrared transmitter for sending data to an 
optional cordless printer. Because the Business Consultant 
uses the same CPU as the HP-71B Handheld Computer,1 
its financial calculations run at least 15 times faster than 
those on the HP-12C. 

The major applications (menus) contained in the HP-18C 
Business Consultant are (see Fig. 2): 
â€¢ FIN â€” time value of money, cash flow analysis, interest 

conversions 
â€¢ BUS â€” percent change, percent total, markup 

SUM â€” running total, one-variable statistics, forecasting 
with one of four models 

s TIME â€” date arithmetic, running clock with the ability to 
set up to six alarms 

''â€¢ SOLVE â€” new way for users to solve their own special 
problems without programming. 

What makes this product special is its ease of use. The 
popularity of the HP-12C told us that its feature set met 
customer needs, and yet we were confident that there were 
ways we could improve the usability of those features. To 
discover how, we contacted our customers through focus 
panels on both coasts of North America, and our contingent 
of sales representatives overseas. The response guided 
many aspects of the design of the business consultant. 

Localization 
From outside the United States came significant feedback 

regarding localization. Many people wanted a calculator 
that communicates in their primary (or perhaps only) lan 
guage. To do this, every message and softkey label was put 
into a single table, thus eliminating the possibility of over 
looking a message during the translation process. The idea 
of a single table, as opposed to strings scattered throughout 
ROM space, appealed to us for financial reasons also. To 
expedite release of the product, the HP-18C's operating 
system was initially stored in two 32K-byte ROM chips. It 
was highly desirable to be able to accomplish localization 

F i g .  1 .  T h e  H P - 1 8 C  B u s i n e s s  
Consultant is HP's latest handheld 
ca lcu la to r  des igned fo r  bus iness  
and  f inanc ia l  app l i ca t ions .  I t  fea  
tures several  bui l t - in appl icat ions 
accessed  by  a  menu-d r i ven  user  
interface, an equation solver, alge- 
briac entry of formulas without the 
need fo r  p rogramming,  and an in  
frared transmitter for sending data 
to an opt ional pr inter.  
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canno t  be  used  to  s to re  va lues .  
Var iab le  used  to  s to re  va lues ;  
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i  o  
Fig.  2.  Bui l t - in  appl icat ion menu st ructures for  HP-18C. 

A U G U S T  1 9 8 7  H E W L E T T - P A C K A R D  J O U R N A L  5  

© Copr. 1949-1998 Hewlett-Packard Co.



by replacing only one of these two chips. By ensuring that 
the message table did not cross a chip boundary, we were 
able to meet this goal. So far, the Business Consultant has 
been localized in German, French, Italian, and Spanish. 

Soft key Menus 
Many people in our target market disliked keyboards 

cluttered with labels. We did not want to sacrifice function 
ality to address this concern, so instead we added more 
keys, both physical and virtual. The physical keys were 
added by providing a second keyboard, using a clamshell 
package design. The virtual keys were added by incorporat 
ing a menu-driven interface, using six softkeys that are 
positioned directly beneath the display. There are no labels 
on these six keys. Instead, their functionality is indicated 
by the labels shown directly above them. For example, to 
get to the percent change application, the user presses the 
softkey labeled BUS (Fig. 2a), which brings up a choice of 
four menus: %CHG, %TOTL, MU%C, and MU%P. Pressing the 
softkey labeled %CHG puts the user into the percent change 
menu. 

The Business Consultant is Hewlett-Packard's first 
menu-driven calculator. The menu scheme was not free â€” it 
came at a cost of approximately 5% of the ROM space. A 
menu table and corresponding menu handler had to be 
constructed to handle the changing execution address and 
ASCII string bound to each softkey, and to deal with the 
idiosyncrasies of each menu. 

People are emphatic about wanting a calculator that they 
can learn to use by merely pressing the keys. They want 
an operating environment that is intuitive and consistent. 
So, the Business Consultant provides help messages to 
guide the user through the various applications, and within 
any application, the same interface produces answers 
quickly and simply. This generalized interface succeeds in 
providing one consistent method for solving problems 
throughout the machine. It is the same as the top-row-key 
interface (Fig. 3) used to solve time-value-of-money prob 
lems on the HP-38C and HP-12C. On these earlier HP finan 
cial calculators, the n, i, PV, PMT, and FV keys provided a 
great "what-if?" tool for time-value-of-money problems 
such as loans, savings, and leasing. To store a value into 
the number-of-periods register, the user keys in the desired 
value and presses the n key. After storing values into four 

Fig. 3.  Top-row-key interface for solv ing t ime-value-of-money 
problems on HP-12C Calculator.  On the HP-18C, the top-row- 
key  in ter face has become a more genera l ized sof tkey  s t ruc  
ture where the key labels are d isplayed on the bot tom of  the 
d isplay above the keys.  

of the five variables, the user simply presses the key corre 
sponding to the unknown variable to solve for its value. 
In this fashion, any variable can be derived after values are 
assigned to the other four variables. 

Through the use of the six softkeys positioned directly 
beneath the HP-18C's display, the Business Consultant user 
can bring up various built-in application menus that make 
use of the same top-row-key interface. When a given appli 
cation is in effect, its variable names come up in the display 
directly above the associated softkeys. We call this general 
ized top-row-key interface the Solve interface. Built-in ap 
plications that use the Solve interface are listed in Table 
I, along with their associated softkey labels. 

Table I  

HP-18C Appl icat ions Using Solve Interface 

Using this standardized interface, functions that tradi 
tionally have been confusing to use on previous calculators 
become extremely intuitive. Two such functions are per 
cent change and percent of total. To determine what percent 
age 17.5 is of 67, press BUS and then press %TOTL. The 
display shown in Fig. 4a appears. Then, pressing keys 6 7 
TOTAL 17.5 PART %T results in the display shown in Fig. 4b. 

As can be seen from Fig. 4b, the Solve interface has been 
further enhanced by adding the labeling of values. When 
a value is stored in a variable, a confirmation consisting 

Fig. 4. Use of the HP-180's softkey user interface, (a) %TOTL 
menu  o f  BUS app l i ca t i on ,  ( b )  Answer  t o  de te rm in ing  wha t  
percentage of  67 a value of  17.5 is .  
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Cash Flow Analysis Using the HP-18C 

An investor has an opportunity to purchase a piece of property 
fo r  $100,000 Year ly  cash f lows are  an t ic ipa ted  as  ind ica ted  in  
Table I ,  and the investor  expects to be able to se l l  the proper ty  
for $120,000 in 10 years. The investor would like an 1 1 .5% return. 

Table I  

Year  
1 
2 
3 
4 
5 

Cash Flow 
$15,000 

12,000 
12,000 
12,000 
10,000 

Year  
6 
7 
8 
9 

10 

Cash Flow 
$10,000 

9,500 
9,500 
9,500 

120,000 

Press  the  F IN so f tkey  on  the  HP-18C to  access  i ts  f inanc ia l  
application menu and then press the CFLO softkey to select cash 
f low ana lys is .  Then press  keys  100000 + / -  INPUT.  The screen 
shown series. Fig. 1 a appears, prompting for the first flow in the series. 
A prompt is  a lso g iven for  the number of  t imes a par t icu lar  f low 
occurs,  s impl i fy ing grouped f low entry .  

Press ing  keys  15000 INPUT g ives  the  d isp lay  shown in  F ig .  

1b.  Note that  the >â€¢ symbol  has migrated down to the TIMES 
prompt. Note also the 1.00 in the calculator l ine. This value is put 
i n  the  f l ow l i ne  whenever  a  f l ow Â¡s  en te red ,  so  tha t  i f  a  f l ow 
occurs  once,  on ly  the INPUT key must  be pressed to  enter  the 
number of occurrences. This feature was added so that the inter 
face  fo r  s imp le  cash  f low p rob lems wou ldn ' t  pay  a  pena l ty  fo r  
the ease o f  use in t roduced for  grouped cash f low prob lems.  

Pressing INPUT causes the screen shown in Fig. 1c to appear. 
To f in ish enter ing the data,  press:  

1 2 0 0 0  I N P U T  3  I N P U T  
1 0 0 0 0  I N P U T  2  I N P U T  
9 5 0 0  I N P U T  3  I N P U T  
1 2 0 0 0 0  I N P U T  I N P U T  

To calculate net present value and internal rate of return, press 
the softkey labeled CALC. The screen shown in Fig. 1d appears. 
To  i npu t  t he  des i red  ra te  o f  r e tu rn ,  p ress  11 .5  l% .  To  ge t  t he  
net  present  va lue,  press NPV and the HP-18C d isp lays  NPV = 
2,914.83. To calculate the internal rate of return, press IRR%, ob 
taining a displayed result of IRR% = 12.01. 

frFL.Ui.-K 
# T I M E S =  

- 1 0 0 ,  0 0 8 .  0 0  

T O  C Ã ± L C U L R T E  
f l H D  H F V  

T - ;  H E E D E D  
N P V ,  N U S ,  M T I M E S  

1  .  0 0  

Fig. Prompt cash displays for cash f low analysis example, (a) Prompt display for f i rst  cash f low 
entry, number After first entry of 15,000 is input, the display prompts for the number of times entry 
occurs. for value of 1.00 is displayed as a default value, (c) Pressing the INPUT key prompts for 
the next entry,  (d) After complet ing the cash f low entr ies,  pressing the CALC softkey gives this 
d i sp l ay .  o f  t he  des i r ed  i n t e res t  va l ue  and  p ress i ng  t he  1% key  t hen  a / l ows  ca l cu l a t i on  o f  

the net present value, net uni form ser ies,  or net future value. 

of the variable name and its value is shown in the display. 
In the percent change application, pressing 1 0 OLD 1 5 
NEW %CH results in the display shown in Fig. 5. Whenever 
a variable is recalled, stored, or solved for, a confirmation 
is given. The Business Consultant maintains a history stack 
of the last four such confirmations given. Up to three can 
be viewed at a time; the fourth is easily accessed via the 
scrolling keys | and J, . The idea of labeling results is 
special to the Business Consultant. 

Data entry for cash flow analysis, running total, and statis 
tics is simplified by conceptualizing this data as number 

lists. The user is prompted for each item in the list. Using 
the scroll keys, the user can move up and down through 
the list for reviewing or editing, and with a single keystroke, 
items in the list can be inserted or deleted. Because the 
list can be named, several lists can exist in memory at a 
time (the exact number is limited only by available mem 
ory). The example in the box above illustrates the simplicity 
with which data can be entered for cash flow analysis. 
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The Equation Solver Menu in the HP-18C 

The user programming language of the HP-1 8C Business Con 
sultant is equations. The user types in an equation using variable 
names and the user's choice, tradit ional algebraic operators, and 
any of  the HP-18C's bui l t - in  set  of  advanced mathemat ica l  func 
t ions and condi t ional  expressions.  Several  equat ions can be en 
tered in  the HP-18C,  the number  l imi ted on ly  by ava i lab le  mem 
ory .  A  name can be typed a t  the  beg inn ing o f  each equat ion  to  
identify it for future recall. An equation is selected from the stored 
l ist by moving a display pointer up and down the l ist of equations. 
When the  po in te r  po in ts  to  the  des i red  equat ion ,  p ress ing  the  
CALC menu key causes the HP-18C to interpret the equation and 
br ing  up the  var iab le  names as  so f tkey  labe ls  a t  the  bot tom of  
the  HP- ISC 's  d isp lay .  The  assoc ia ted  so f tkeys ,  o r  menu keys ,  
below the display are used to store and calculate solut ions using 
the re lat ionships in  the equat ion.  The user  enters va lues for  a l l  
but  one of  the var iables and the HP-18C solves for the unknown 
variable. 

The  p rogramming  charac te r i s t i cs  o f  the  equa t ion  so lve r  a re  
enhanced by 26 advanced funct ions and condit ional expressions 
that can be used in formulat ing an equat ion. Whi le t r igonometr ic 
funct ions are not  prov ided,  natura l  and base-10 logar i thms,  fac 
tor ia l ,  absolute value,  min imum, maximum, p i ,  in teger par t ,  f rac 
t iona l  par t ,  round ing and t runcat ion ,  modu lo ,  s ign ,  and square  
r o o t  a r e  a v a i l a b l e .  A n o t h e r  s i x  f u n c t i o n s  s p e c i f i c  t o  f i n a n c e  
mathematics are available as are date and delta-days functions. 

As  a  s imp le  example ,  cons ider  a  fo rmula  tha t  expresses  the  
economics o f  per forming a  tune-up on an automobi le  eng ine:  

C O S T  x  M P G B E F O R E  x  M P G A F T E R  - i -  ( M P G A F T E R  -  M P G B E F O R E )  
+  P R I C E G A S  =  B E M I L E S  

The equat ion inc ludes f ive var iab les:  cost  o f  the tune-up,  mi les 
p e r  g a l l o n  b e f o r e  a n d  a f t e r  t h e  t u n e - u p ,  p r i c e  p e r  g a l l o n  o f  
gasol ine, and break-even miles â€” the number of mi les at which 
the cost of the tune-up is recovered by the benefi t  of the reduced 
gasol ine consumpt ion.  

A  use r  "p rog rams"  the  HP-18C to  so l ve  the  above  equa t ion  
by  press ing the SOLVE menu key,  typ ing in  the equat ion (F ig . ,  
1a), and then pressing the CALC menu key. When the CALC menu 
key is  pressed,  the keys are customized to the above equat ion.  
The variable-width character font for the softkey labels al lows up 
to f ive characters of the variable name to show as a label.  In this 
case, the labels are COST, MPGB, MPGA, PRICE, and BEMI (Fig. 
1 b) .  However,  when a var iable name appears as a resul t  in  the 
o t h e r  l i n e s  o f  t h e  d i s p l a y ,  t h e  c o m p l e t e  v a r i a b l e  n a m e  i s  d i s  
played. 

Solv ing th is  problem paral le ls  that  for  solv ing problems using 
the bui l t- in functions of the machine. A solut ion can be calculated 
fo r  each  o f  the  va r iab les  in  the  equa t ion ,  g i ven  va lues  fo r  the  
o t h e r  t o  A  q u i c k  e x a m p l e  u s i n g  t h e  t u n e - u p  f o r m u l a  i s  t o  
key in  28 and press the sof tkey labe led MPGB, key Â¡n 33 and 
press softkey MPGA, key in 0.839 and press PRICE, and key Â¡n 
15000 and press BEMI.  Then press COST to solve the equat ion 
and see displayed COST=68.10,  (F ig.  1c) ,  the cost  of  a tune-up 
that would pay for i tself  by improved gasoline mileage for 1 5,000 
mi les. I f  the tune-up cost is $85, key i t  in,  press COST, and then 
press of  to  see d isp layed BEMILES = 18,722.29,  the number of  
m i les  tha t  mus t  be  d r i ven  to  b reak  even  on  a  tune -up  cos t i ng  
$85 and improv ing mi leage f rom 28 to  33 mi les  per  ga l lon.  

Other equations can be typed in just as easi ly.  Each addit ional 
fo rmula  is  added to  the formula  l i s t  in  cont inuous memory.  You 
c a n  s e e  a n d  s e l e c t  e a c h  f o r m u l a  b y  u s i n g  t h e  s c r o l l - u p  a n d  

scrol l -down keys f  and I  .  The RAM Â¡n the HP-18C is suf f ic ient  
to store about ten equations of the length and number of variables 
i l lust rated by the tune-up example above.  

Direct Solution 
The advantage of  the HP-18C's equat ion solver  as a program 

ming language is evident â€” one equat ion with n var iables does 
the  work  o f  n  t rad i t iona l  p rograms wr i t ten  to  so lve  fo r  a  s ing le  
variable as a function of the n â€” 1 other variables. The equation 
solver solves directly for any variable that meets all of the following 
condit ions: 
â€¢ Appears only once in the equation 
â€¢ Does not appear as an exponent 
â€¢ Involves only the operators for addition, subtraction, multiplica 

t ion, div is ion, and exponent iat ion 
â€¢ The only funct ions, i f  any, in which the var iable appears are 

seven spec i f i ca l l y  iden t i f ied  func t ions  such as  logar i thm,  in  
verse logar i thm, and square root .  

These condit ions are met for COST, PRICEGAS, and BEMILES in 
the example above.  

Iterative Solution 
The variables MPGBEFORE and MBGAFTER in the example do 

not  meet  the above condi t ions for  d i rec t  so lu t ion.  The so lu t ion 

F ig .  1 .  D i sp lays  du r i ng  so lu t i on  o f  t une -up  cos t  s tudy ,  (a )  
Entry of tune-up cost equation, (b) Pressing CALC key assigns 
labe ls  to  sof tkeys as shown,  (c)  Break-even cost  for  15,000 
mi les  wi th  mi leage improved f rom 28 to  33 mpg.  
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for either of these variables in the equation solver uses an iterative 
search process.  The process systemat ica l ly  var ies the va lue of  
the subject variable unti l  the value of the left side of the equation 
equa l s  t he  va lue  o f  t he  r i gh t  s i de  o f  t he  equa t i on .  Wh i l e  t h i s  
search is  tak ing  p lace,  the  va lue used fo r  each i te ra t ion  is  d is  
played to give the user a sense of the progress toward a solution. 
The user  can  s ta r t  a  search  us ing  one or  two es t imates  o f  the  
solut ion; otherwise, defaul t  values are used. 

Because the iterative solution is numerical rather than analytic, 
and because an arb i t rary  var iab le  in  an arb i t rary  equat ion may 
have one so lu t ion ,  more  than  one,  o r  no  so lu t ion ,  the  HP-18C 
Business Consultant Owner 's Manual descr ibes some anomal ies 
that the user might encounter, as wel l  as procedures for learning 

va lues  t ha t  m igh t  i nd i ca te  m in imum,  max imum,  o r  unde f i ned  
points in the equation. 

C o n v e n t i o n s  
There are a few convent ions that  the user  must  learn to  type 

in general algebraic equations. For example, there are no implied 
opera tors  (Z  =  3  Y  must  be  typed Z  =  3  x  Y) ,  and there  are  no  
subscr ip ts  or  superscr ip ts  (Y  cubed must  be  typed v  

Pau l  Swadener  
Development  Engineer  

Handheld  Computer  and Calcu la tor  Operat ion 

S O L V E  A p p l i c a t i o n  
We were told that most users of financial and business 

calculators do not want to be bothered with programming 
in the traditional sense. But at the same time, there was 
no consensus by any focus panel as to desired functions. 
Clearly some form of customization was called for, but not 
in the guise of programming. The SOLVE application ad 
dresses this need. It incorporates the same unknown-vari 
able solution concept that was generalized for the built-in 
applications, but extends it a step farther. The user types 
in an equation that describes a particular problem. Several 
variables can be used (the number is limited only by avail 
able memory), and each variable name can have up to 10 
characters. At the press of a key, the equation is interpreted, 
and the variable names are extracted and used to label the 
softkeys. Here, as elsewhere in the machine, when variable 
names are assigned to the softkeys, the same Solve interface 
is in effect. The user keys in values for all but one of the 
variables, then presses the key corresponding to the un 
known variable to solve for it. This ability to enter equations 
and then solve for different variables is known as the Equ 
ation Solver, a feature new to handheld calculators. (See 
box on page 8 for more details and an example of the use 
of the Equation Solver.) 

Of all the decisions made by the design team regarding 
the user interface, the one that was by far the most difficult 
(as well as the most controversial) was the one that made 
the HP-18C operation algebraic, rather than RPN. But, a 
thorough survey told us that an algebraic HP financial cal 
culator would appeal to new users, and algebraic notation 
is consistent with the Equation Solver interface. 

Print Option 
We repeatedly heard that a printer would be a welcome 

peripheral for our business/financial calculators. So, avail 
able as an option is the HP 82240A Infrared Printer that 
receives data from the Business Consultant via an infrared 
beam, thus eliminating the need for wires between cal 
culator and printer. All variables and data associated with 
a particular application can be printed out, whether it be 
an amortization schedule or the variable values associated 
with a user-input equation. In TRACE mode, every keystroke 
is printed to provide a complete record of what the user 
has done. 

RPL 
The Business Consultant is one of the first HP calculators 

(the HP-28C being the other) that has a major portion of 
its operating system written in a high-level language â€” RPL. 
This assisted us in reaching our ease-of-use goal. It allowed 
us to prototype user interface changes quickly in response 
to focus panel feedback and to test the newly implemented 
modifications. Ironically, programming in a high-level lan 
guage also provided us with one of our major implementa 
tion challenges â€” minimizing response time. In many cases, 
this meant careful review of RPL code to see where the 
code could be optimized. In critical areas it meant rewriting 
some sections in assembly code. 

Throughout the design of the Business Consultant, we 
were confronted with the delicate balance between ad 
vanced functionality and ease of use. We devised ways to 
provide the functionality without sacrificing the product's 
short learning curve. Some of the techniques we use to 
accomplish this are displaying numerous help messages, 
asking for confirmation when attempts are made to clear 
significant amounts of data, using the top-row-key interface 
and history stack throughout the machine's many applica 
tions, and providing an easy mechanism for entering and 
modifying data. 
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History and Inspiration of the Solve Interface 

The equation solver concept and interface for the HP-1 8C and 
HP-28C Calculators were developed one evening af ter  midnight  
in  an ef for t  to  avoid the boredom of  debugging the HP-71 Hand 
held Computer 's  Circui t  Analys is Pac.  

I  was  a t tempt ing  to  so lve  an  equat ion  by  hand to  de termine  
whether the results of the Pac were correct.  After three attempts 
and  th ree  d i f f e ren t  resu l t s  w i th  the  same equa t ion ,  I  dec ided  
ano ther  approach  was  needed .  Us ing  the  HP-71  and  i t s  Ma th  
Pac, I wrote a small function to represent the equation and solved 
f o r  t h e  t h i s  r o o t s  u s i n g  t h e  F N R O O T  f u n c t i o n .  A t  f i r s t ,  t h i s  
s e e m e d  t o  b e  a s  d i f f i c u l t  a s  u s i n g  t h e  p e n c i l - a n d - p a p e r  a p  
p r o a c h .  T h e  v a r i a b l e  i n  q u e s t i o n  n e e d e d  t o  b e  i s o l a t e d  a n d  
po in ted  a t ,  and  the  func t i on  needed  to  be  i n  a  spec i f i c  f o rm.  
Although I had used this feature before, i t  was necessary to read 
the manual again to remember how to do it .  But once the function 
was completed,  the roots  were found qu ick ly .  

Once  the  mechan ics  were  unde rs tood ,  i t  seemed  s imp le  to  
repeat  the  p rocess  w i th  o ther  equat ions .  Whi le  exper iment ing  
wi th th is  st ructure,  i t  became c lear  that  the abi l i ty  to select  any 
var iab le  eas i l y  wou ld  be  very  use fu l .  Then  the  same equat ion  
could be solved readi ly  for  any of  i ts  var iables.  

Paul  Swadener implemented a vers ion that  would accompl ish 
this on several HP calculators. The variable was usually selected 
by spec i fy ing a number  corresponding to  the occurrence of  the 
v a r i a b l e  a s  i t  m a p p e d  t o  a  r e g i s t e r  i n  a n  R P N  p r o g r a m  t h a t  
r e p r e s e n t e d  t h e  e q u a t i o n .  H e  a l s o  a c c o m p l i s h e d  t h i s  i n  t h e  
B A S I C  l a n g u a g e  b y  u s i n g  s u b s c r i p t e d  a r r a y s  i n  p l a c e  o f  t h e  
simple variables of the equations. The interface allowed a number 
to speci fy  the requi red subscr ipt .  

What seemed to be missing at  th is point  was an intui t ive inter 
face that  cou ld  be used eas i ly  w i thout  burden ing the user  w i th  
the  mechan ics  o r  s t r i c t  requ i rements  o f  the  opera t ing  sys tem.  
Th is  in ter face shou ld  a l low the user  to  enter  any equat ion and 
so lve  for  any unknown wi th in  tha t  equat ion  wi thout  requ i r ing  a  
manual  each t ime the inter face was used.  I t  should support  any 
add i t iona l  opera t ion  tha t  wou ld  cont r ibu te  to  us ing  the  resu l ts  
obta ined f rom the equat ion.  The in ter face should a lso reassure 
the  user  tha t  the  appropr ia te  keys  had  been  p ressed  and  tha t  
t he  spec i f i ed  answer  had  been  ob ta i ned .  F i na l l y ,  t he  requ i re  
ments of  a  f r iendly  equat ion solver  in ter face became apparent :  

It should be possible to assign values easily and independently 
to al l  of  the var iables of  an equat ion or formula.  

â€¢ I t  must be possible to select any variable as the unknown to 
be determined.  
The keyst rokes requ i red to  per form these opera t ions shou ld  
be minimal  in  number,  and intu i t ive to the lay person.  
Output  should be c lear ly  labeled to conf i rm the solut ions.  

â€¢ The equat ion should not  requi re any specia l  processing by 
the user before i t  is typed in.  
Ponder ing  these  fac to rs ,  I  saw the  s im i la r i t i es  be tween the  

requirements of general equation solving and the HP-1 2C's t ime- 
value-of-money keys. The HP-1 2C uses an efficient interface that 
suppor ts  the  ass ignment  and/or  se lec t ion  o f  any  var iab le  w i th  
the fewest  keyst rokes poss ib le .  The on ly  prob lems were that  i t  
only worked for  the var iables that  were pr inted on the keys and 
the resul ts  were not  labeled.  Could th is  in ter face be appl ied to  
any equation? The solution is to use a row of keys for the physical 
i n te r face  and  le t  t hem be  used  fo r  a l l  equa t ions .  The  d i sp lay  
above them can be  used to  labe l  the  keys  in  a  manner  s im i la r  
to the softkey approach used on many terminals and computers. 
This requires ei ther a mult ip le- l ine display or a very long single- 
l i ne  they  s ince  the  d isp lay  mus t  a lso  show the  va lues  as  they  
are input or output.  

The last missing piece was how to enter equat ions in the form 
requ i red  fo r  the  roo t - f ind ing  program.  The eas ies t  so lu t ion  fo r  
the user  would  be s imply  to  a l low an equat ion to  be entered in  
any form whether or  not  an equals s ign is  present .  

When al l  of these ideas were combined and labels were added 
to  the output ,  I  was surpr ised at  how easy the in ter face was to  
use .  As  d i f f e ren t  equa t i ons  we re  t r i ed ,  ce r t a i n  add i t i ona l  en  
hancements  became des i rab le .  Occas iona l l y  i t  was  he lp fu l  to  
be  ab le  to  use  the  va lue  o f  a  va r iab le  f rom one  equa t ion  as  a  
variable in another.  To accomplish this,  al l  var iables are al lowed 
to  be g lobal .  Thus,  a  var iab le  mainta ins i ts  va lue f rom one equ 
at ion this another unless i t  is recalculated or reassigned. At this 
po in t ,  the  ab i l i t y  to  scro l l  up  and down a  l i s t  o f  equat ions  was 
added.  Th is  made i t  poss ib le  to  so lve for  a  var iab le ,  press one 
key, and be in a different equation with the value for that variable 
already assigned. 

Once a work ing model  o f  th is  in ter face was complete,  s imply  
showing i ts use to someone was enough to generate exci tement 
a n d  s u p p o r t ,  f r o m  b o t h  m a r k e t i n g  a n d  t h e  l a b .  H e r e  w a s  a n  
i n te r face  tha t  cou ld  he lp  wr i t e  p rog rams  fo r  us ,  and  c lea r  up  
some o f  the  keyboard  c lu t te r  tha t  comes f rom many  func t ions  
on a few keys. By using at least two display l ines, we could make 
avai lable many formulas or  equat ion solut ions wi thout  requir ing 
more keys.  The softkeys could also be used for more t radi t ional  
menus, support ing the functions already found on our calculators 
and computers ,  reduc ing keyboard c lu t ter  even fur ther ,  and im 
proving some of  our more t radi t ional  user inter faces.  

Chr is  M.  Bunsen 
Development  Engineer  

Handheld  Computer  and Calcu la tor  Operat ion 

Grodd developed the RPL kernel. Paul Swadener was our 
financial consultant, Chris Bunsen pioneered the SOLVE 
user interface with his early prototype (see box above), 
Anne Ellendman was our patient manual writer, and Shar 
on Bolden was our quality assurance person with a seem 
ingly endless supply of energy. 

Reference 
1. S.L. Wechsler, "A New Handheld Computer for Technical Pro 
fessionals," Hewlett-Packard Journal, Vol. 35, no. 7, July 1984. 

10  HEWLETT-PACKARD JOURNAL AUGUST 1987  

© Copr. 1949-1998 Hewlett-Packard Co.



An Evolut ionary RPN Calculator  for  
Technical  Professionals 
Symbolic algebraic entry, an indefinite operation stack size, 
and a variety of data types are some of the advancements 
in HP's latest scient i f ic calculator.  

by Wil l iam C.  Wickes 

THE HP-28C (Fig. 1} provides the most extensive 
mathematical capabilities ever available in a hand 
held calculator. Its built-in feature set exceeds even 

the capabilities of the earlier HP-71B Handheld Computer1 
with its Math ROM.2 Furthermore, the HP-28C introduces 
a new dimension in calculator math operations â€” symbolic 
algebra and calculus. A user can perform many real and 
complex number calculations with purely symbolic quan 
tities, delaying numerical evaluation indefinitely. This al 
lows a user to formulate a problem, work through to a 
solution, and study the mathematical properties of the so 
lution entirely on the calculator. 

The HP-28C has the following features: 
An RPN calculator interface allowing an indefinite 
number of stack levels and a variety of data types 
A softkey menu system for key-per-function execution 
of all built-in and user-defined procedures and data 

â€¢ Extensive real and complex number functions 

â€¢ Symbolic algebra and calculus 
An automated numerical root-finder (see article on page 
30. 

â€¢ Vector and matrix math operations 
Automatic plotting of functions and statistical data 
Unit conversions among arbitrary combinations of 120 
built-in units and user-defined units 

â€¢ Integer base arithmetic, bit manipulations, and logic op 
erations in either binary, octal, decimal, or hexadecimal 
notation 
A keystroke-capture programming language enhanced 
by high-level program control structures 
An infrared printer interface for printing and graphics 
output on the optional HP 82240A Infrared Printer. 
The HP-28C's physical package differs from that of the 

HP-18C Business Consultant (see page 4) in only two as 
pects. The HP-28C uses different key nomenclature op 
timized for its math operations, and it contains an addi- 

Fig. 1 .  The HP 28C Scient i f ic Pro 
fessional  Calculator  features sym 
b o l i c  e n t r y  o f  a l g e b r a i c  e x p r e s  
s i o n s  f o r  a n  e x t e n s i v e  r a n g e  o f  
funct ions capable of handl ing real 
a n d  c o m p l e x  n u m b e r s ,  v e c t o r s  
and  mat r i ces ,  base  2 ,  8 ,  70 ,  and  
16 integers, l ists,  and bui l t - in con 
ve rs ion  fac to rs .  The  d isp lay  can  
display up to four l ines of the indef 
inite-depth stack or be used to plot 
f u n c t i o n s  w i t h  a  r e s o l u t i o n  o f  
3 2  x  7 3 7  p i x e l s .  A n  i n t e g r a l  i n  
frared transmitter al lows output of 
d a t a  a n d  g r a p h s  t o  a n  o p t i o n a l  
printer. 
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tional 64K bytes of ROM, for a total of 128K bytes. 
The design philosophy for the HP-28C was to generalize 

the ease of use, power, and flexibility of HP's RPN cal 
culator interface to a wider class of data types and applica 
tions while also eliminating some of the shortcomings of 
that interface. In the remainder of this article, we describe 
some of the features of the HP-28C in the context of the 
evolution of the RPN interface. 

Enhanced RPN 
Reverse Polish notation (RPN), in which mathematical 

expressions are written with functions following their argu 
ments, is embodied in computers and calculators by means 
of a last-in-first-out (LIFO) data stack. Mathematical and 
logical functions take their arguments (inputs) from the top 
of the stack, and return their results to the stack where 
they can be used as the arguments for subsequent opera 
tions. An RPN stack is the most efficient medium for chain 
ing and nesting calculations, and provides the greatest 
keystroke efficiency in a calculator. 

The original HP RPN calculator user interface was first 
used in the HP-35 Calculator3 in 1972. In that and sub 
sequent HP calculators, the stack consisted of four fixed- 
length registers, each of which could contain one floating 
point number (the HP-41C Calculator4 also permits al 
phanumeric data in the form of a character string con 
strained to fit in a fixed-length number register). This sys 
tem was satisfactory for the numeric-only capability of the 
early calculators, but with the advent of programmability 
and algorithms for more complicated data types, the restric 
tions of the fixed stack became more and more of a design 
impediment. For example, in the HP-41C and HP-15C5 Cal 
culators, complex numbers are represented by two real 
floating-point numbers, one for the real part and one for 
the imaginary part. Two stack registers are needed for each 
complex number, which means that a four-register stack 
can hold only two complex numbers, severely restricting 
the types of complex-number math operations that can be 
performed on the stack. For example, the complex-number 
expression (A + B)(C + D) cannot be evaluated without stor 
ing an intermediate result away from the stack. 

The HP-28C is the first HP calculator to modify the tra 
ditional RPN interface. To begin with, the concept of a 
stack register is generalized to a stack level that can hold 
an object of indeterminate size. An object can be one of 
several types of data or procedures, each characterized by 
its internal structure and execution logic. Any object can 
be manipulated on the stack as a single unit. For example, 
a complex number is represented by an ordered pair of 
floating-point numbers that is entered and displayed in the 
form (number, number). Since a complex-number object 
now occupies a single stack level, it can be manipulated 
with the same keystrokes used for a real-number object. 
For example, complex numbers in the first two stack levels 
can be added by pressing the + key, multiplied by pressing 
the x key, etc. 

Besides real and complex numbers, HP-28C data objects 
include real and complex-valued arrays (matrices and vec 
tors), alphanumeric strings, binary integers, and lists. Bi 
nary integers are binary coded integers of l-to-64-bit words 
which can be entered or displayed in binary, octal, decimal, 

or hexadecimal bases. Lists are ordered collections of other 
objects. Data objects are characterized by the simple prop 
erty that the evaluation of the object just returns the same 
object. 

The generalized stack concept permits the introduction 
of object classes that have no counterpart in previous RPN 
implementations. A name object, for example, is a character 
sequence that is used to identify other objects by name. In 
the HP-28C, the numbered storage registers on earlier cal 
culators are replaced by variables. A variable is a combina 
tion of a name object and any other object stored together 
in a linked list independent of the stack. Name objects have 
the property that evaluation of the name returns the object 
stored with the named variable (and if the object is a pro 
gram, executes the program). This means that a user variable 
behaves exactly like a built-in command. (In HP-28C ter 
minology, a command is a built-in, programmable operation.) 

A name for which no variable has yet been created fills 
the role of a formal variable in mathematics, upon which 
operations can be performed, even before evaluation. Such 
names just return themselves when evaluated. This prop 
erty is central to the implementation of symbolic mathema 
tics on the HP-28C. 

Evaluation by name and the linked list of variables are 
modeled after a Forth dictionary. Built-in commands are 
compiled as their execution addresses, as in Forth. How 
ever, user-defined names are compiled unresolved. This 
permits compilation of undefined (formal) variables, and 
also allows selective purging of variables from memory, 
neither of which is possible in Forth. There is a degradation 
of performance compared to Forth because of the necessity 
for run-time resolution of user variables, but the overall 
throughput for user problem solving is usually better be 
cause of the ease of programming and flexibility of the 
HP-28C language. 

The remaining new object class defined in the HP-28C 
is procedure objects. A procedure object contains an arbi 
trary number of other objects that are executed automati 
cally and sequentially when the procedure object itself is 
evaluated. The procedure class includes programs, which 
are unrestricted sequences of data, commands, or variables, 
and algebraic objects, which represent mathematical ex 
pressions and equations and therefore must satisfy certain 
syntax rules. Both procedure object types can be manipu 
lated on the stack, or named in a variable. In previous 
calculators, programs were created and edited only in a 
special program mode. 

Variable Stack Depth 
In another major break with earlier calculator architec 

tures, the HP-28C stack grows dynamically as new objects 
are entered onto the stack and shrinks as they are removed. 
The number of objects on the stack is limited only by avail 
able memory. There are two major benefits of this approach. 
First, mathematical calculations of arbitrary complexity 
can be carried out entirely on the stack. Second, it facilitates 
structured programming â€” procedures can be defined exter 
nally in terms of the number and type of arguments they 
take from the stack and the number and type of result 
objects they return. Subroutines can be nested to an arbi 
trary depth without concern for stack overflow. 
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Example Problem 

A fa rmer  has  100  ya rds  o f  fenc ing  to  enc lose  a  rec tangu la r  
f i e ld ,  wh ich  i s  bounded  on  one  s ide  by  a  r i ve r .  Wha t  l eng th  L  
and width W of  the f ie ld  wi l l  enc lose the maximum area? 

Solut ion using HP-28C: 

1 .  T h e  l e n g t h  o f  t h e  f e n c e  i s  1 0 0 ,  i . e . ,  L  +  2 W  =  1 0 0 .  E n t e r  
e q u a t i o n  u s i n g  k e y s t r o k e s :  ' L  +  2 x w  =  i o o  E N T E R  
2. Solve for L, i.e., 100-2W, by pressing â€¢ L SOLV ISOL 
3. Assign this value to L by pressing â€¢ u STO. 
4 .  The  a rea  o f  t he  f i e ld  i s  LW,  i . e . ,  LW =  AREA.  P ress  '  L  x  w  
=  A  R  E  A  E N T E R  
5. Subst i tute forL,  i .e. ,  (100-2W)W = AREA, by pressing EVAL 
6. To find the maximum area, differentiate by pressing ' W ENTER 
d/dx, obtaining the expression -(2*W)+(100-2*W) = 0. 
7 .  C o l l e c t  t e r m s ,  i . e . ,  1 0 0 - 4 * W = 0 ,  b y  p r e s s i n g  A L G E B R A  
C O L C T  
8. Solve for W by pressing '  w SOLV ISOL. 
9 .  Ass ign th is  va lue,  i .e . ,  25 ,  to  W and so lve  fo r  L  by  press ing 
'  w STO L EVAL. This gives a result of 50. 

Answer: The width of the f ield should be 25 yards, and the length 
50  yards .  The en t i re  p rob lem can be  fo rmula ted  and so lved  in  
the HP-28C wi thout  recourse to  penc i l  and paper .  

The use of an indefinite stack size as the central user 
interface is again reminiscent of Forth. The names of vari 
ous stack manipulation commands â€” DUP, SWAP, ROLL, 
PICK, etc.â€” were adapted from Forth. However, the HP-28C 
adds a dimension of user protection derived from its cal 
culator heritage. It is not possible to cause memory loss 
by, for example, pushing too many objects onto the stack 
as most Forth programmers have experienced. The HP-28C 
has an elaborate low-memory handler that prevents such 
drastic results. 

The memory stack is a stack of 5-nibble object pointers, 
not the objects themselves. The objects are stored either in 
a temporary object area or in user variable memory. Thus, 
when an object on the stack is duplicated, only the pointer 
is duplicated. But when the stack is decompiled, the objects 
are shown, not the pointers, so that the stack has the visible 
and logical behavior of a stack of the actual objects. The 
existence and management of the object pointers is entirely 
transparent to the user. 

Command L ine  
In keeping with its theme of uniform treatment of all 

object types, the HP-28C provides a free-form command 
line in place of the multiple entry modes of its predecessors. 
For example, in the HP-41C the user enters floating-point 
numbers directly into the stack's X register, alpha data into 
an alpha register in alpha mode, and programs into program 
memory via program mode. In the HP-28C, all new objects 
are typed as character strings into the command line, which 
is created dynamically when a number or letter key is pressed. 
The contents of the command line can be edited with cur 
sor, backspace, delete, and insert keys. The unrestricted 
size of the command line allows the entry of more than 
one object on one line, as well as calculator commands 

that are specified by name. 
Different object types are identified within the command 

line by characteristic delimiter characters. For example, 
strings are enclosed in double quotes, variable names and 
algebraic expressions are surrounded by single quotes, and 
lists are enclosed in curly brackets. These delimiters are 
also used when objects are displayed on the stack. 

The centerpiece of RPN keyboards has always been the 
ENTER key. On previous calculators the ENTER operation 
terminates digit entry, copies the contents of the X register 
into the Y register, and then disables stack lift. On the 
HP-28C, the concept of stack lift disable has been elimi 
nated (with an indefinite-depth stack, it serves no purpose 
and would only add confusion), and the role of the ENTER 
key has been generalized to mean "parse and evaluate the 
command line." 

Context-Sensit ive Keys 
The use of a command line entry method on a calculator 

that provides immediate key-per-function execution re 
quires a dynamically configured keyboard that is sensitive 
to the current content of the command line. For example, 
the primary definition of the + key is to add the contents 
of stack levels one and two, and normally, the addition is 
performed immediately when the key is pressed. To pre 
serve keystroke similarity with previous RPN calculators, 
+ should act on the most recently entered arguments, 
whether or not they have been moved from the command 
line to the stack. On the other hand, if the user is entering 
an algebraic expression or a program, pressing the + key 
should just append the plus sign to the command line. 
There is a large group of such context-sensitive keys, in 
cluding virtually all programmable command keys. The 
remaining keys either execute immediately, like ENTER, or 
add characters and numbers to the command line, like the 
letter and digit keys. 

The action of context-sensitive keys is determined by 
three entry modes: 

In immediate mode, the default state, context-sensitive 
keys execute immediately. Where appropriate, most keys 
automatically perform ENTER before executing their own 
definitions. Thus the standard RPN sequence to add 3 
and 6 of 3 ENTER 6 + is preserved â€” pressing the + key 
enters 6 onto the stack and then executes the addition. 

K In algebraic entry mode, keys corresponding to com 
mands such as +, SIN, and LN that are legal in algebraic 
expressions append their function names to the com 
mand line. All other commands execute immediately. 
These include, for example, stack operations that are 
outside of the scope of ordinary algebraic expressions. 
In alpha entry mode, all context-sensitive keys append 
their labels to the command line. 

The active entry mode is indicated by the shape of the 
command line cursor. An open rectangle indicates im 
mediate mode, a rectangle with two horizontal lines inside 
shows algebraic mode, and a filled rectangle means alpha 
mode. Similar arrow shapes are used when command line 
entry is insertion mode rather than replacement mode. 

The choice of entry mode depends most often on the 
type of object being entered into the command line. The 
HP-28C automatically changes entry mode when certain 
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delimiter keys are pressed. Pressing the ' key signifies the 
beginning of an algebraic object, which automatically 
changes the entry mode from immediate to algebraic entry. 
Similarly, pressing the " key (strings) or the Â« key (pro 
grams) sets alpha entry mode. These automatic changes 
mean that most of the time, the user does not have to be 
concerned about the mode. 

Visible Stack 
The visible appearance of the stack is considerably differ 

ent from previous calculators, beyond the simple consider 
ation that the four-line display can show up to four stack 
levels simultaneously. A typical display might look like 
Fig. 2. Here we see that there is a 2X2 matrix in level 1, a 
complex number in level 2, and an algebraic expression in 
level 3. Note that each object occupies only one stack level, 
even though each is composed of several parts. The nota 
tion 1:, 2:, 3:, etc., was adopted to name the stack levels, 
because there was no logical extension of the traditional 
X, Y, Z, T sequence used for the earlier four-register stack 
to an indefinite number of stack levels. 

A major design challenge was solving the problem of 
how to handle the partial decompilation of objects for view 
ing. In many cases, an object is too big to display on a 
single line, or even in the entire display. Therefore, it was 
necessary to devise a scheme to permit scrolling the display 
up or down through such an object. At the same time, the 
limited RAM of the HP-28C makes it preferable not to de 
compile an entire object into a character string form, since 
there might not be enough memory available to hold a long 
display string in addition to the object itself. 

This problem is most severe in the case of algebraic ex 
pressions. The internal RPN order of the objects that define 
an expression is not the same as the order of the terms in 
the decompiled form. The first object in the written form 
of an algebraic expression may well be the last object in 
the RPN execution order of the expression. The solution 
is to generate a compact binary code to represent the display 
order of the objects in an algebraic expression, including 
the positions of parentheses and other special characters. 
This code is preserved as long as any portion of the alge 
braic expression is displayed. Pointers into the code indi 
cate the currently displayed portion and which portions 
to display next if the user moves the display window. 

Symbol ic  Mathemat ics 
The first electronic calculators were characterized by 

their ability to apply a fixed set of operations to data 
supplied by the user in the form of real numbers. Program 
mable calculators provided a new generation of capability 

by allowing users to add their own custom operations to 
the built-in function set. The HP-28C represents a third 
generation of calculator design with its capability of apply 
ing logical and mathematical operations to programs. 

A conventional program can be considered as a symbolic 
calculation. That is, the program is written in advance of 
the data to which it is to be applied, and refers to that data 
only by name or other form of abstraction. However, cal 
culator languages share the common limitation that they 
cannot manipulate the programs themselves or their sym 
bolic results in their unevaluated form. This includes non- 
keystroke languages like BASIC, which accept expressions 
in a pseudomathematical form. 

The HP-28C provides two symbolic object types: name 
and algebraic. In this context, name objects can be consid 
ered as expressions consisting of only a single variable. 
Algebraic objects are just procedures that are entered and 
decompiled in expression form. They are identical inter 
nally to RPN procedures (called programs, for simplicity), 
except that they are marked as algebraic objects. They are 
restricted in their definition to satisfy so-called algebraic 
syntax â€” they must take no arguments from the stack, return 
exactly one result, and be completely divisible into a hierar 
chy of subexpressions , each of which also satisfies algebraic 
syntax. 

The key to performing symbolic math operations on the 
HP-28C is the behavior of commands corresponding to 
mathematical functions, which accept symbolic argu 
ments. Such a function examines its arguments, and if one 
or more is symbolic, returns a new symbolic object repre 
senting the function applied to the symbolic argument. For 
example, if 'A' and 'B' are on the stack, pressing the + key 
returns the result 'A + B'. Then pressing keys 2 and A returns 
'(A + B) A2'. 

When an algebraic object is evaluated by pressing the 
EVAL key, it behaves exactly like the equivalent program â€” 
each object in the algebraic object is evaluated in an RPN 
sequence. Consider the evaluation of the algebraic object 
'(A + B)*C', where A is has the value 2, B has the value X + Y, 
and C has no value. The expression is equivalent to the 
program key sequence A B + C x . When the EVAL key is 
pressed: 
1. A is evaluated, returning its value 2. 
2. B is evaluated, pushing its value X + Y onto the stack, 
which now looks as shown in Fig. 3a. 

(cont inued on page 16)  

4 :  

Fig .  2 .  Typ ica l  HP-28C d isp lay  w i th  a  2x2 mat r ix  in  leve l  1 ,  
a complex number in  level  2,  and an a lgebraic  expression in  
level 3. 

4 

i :  
(b) 

Fig. 3.  (a) Display af ter B is evaluated (see text) ,  (b) Display 
af ter C is evaluated, returning just  i ts name. 
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HP-28C Plotting 

The HP-28C inc ludes a  s imple  p lo t t ing capabi l i ty  for  the gen 
erat ion of mathematical funct ion plots and stat ist ical data scatter 
plots. Although the size and resolution of the l iquid-crystal display 
severely l imit  the detai l  and elegance of the graphics, such plots 
can be ex t remely  usefu l  in  prov id ing a  g loba l  p ic ture  o f  the  be 
hav io r  a  a  func t ion  o r  a  se t  o f  s ta t i s t i ca l  da ta .  In  par t i cu la r ,  a  
p lo t  i s  a lmos t  ind ispensab le  fo r  f i nd ing  in i t i a l  guesses  fo r  the  
HP-28C's equat ion solver,  and for  sort ing out  the ambigui t ies of  
mult iple roots. 

As an example,  consider  the equat ion:  

x3-x2-2x + .75 = 0 

T h i s  w e  h a s  t h r e e  r o o t s ,  o f  w h i c h  a t  l e a s t  o n e  i s  r e a l .  I f  w e  
plot the expression on the left,  using the default plot parameters, 
we  ob ta in  the  d i sp lay  shown in  F ig .  1a .  F rom th i s  p i c tu re ,  we  
can observe that there are three real  roots,  which correspond to 
the points where the p lot ted curve crosses the ax is .  To zoom in 
on the region contain ing the roots,  we can execute .3 *w,  which 
multiplies the horizontal range by 0.3, then plot again (Fig. 1 b). 

To determine a prec ise value for  any of  the roots,  we:  
1  .  D ig i t i ze  two  po in ts  f rom the  p lo t  a t  se lec ted  va lues  o f  t he  

hor izontal  coordinate on both s ides of  the root .  
2 .  Ex i t  the  p lo t  and combine the  two d ig i t i zed coord inates  in to  

a list. 
3. Act ivate the equation solver and store the l ist  into the variable 

X as a f i rst  guess for the root- f inder.  
4.  Solve for  X.  

Dig i t iz ing is  achieved by means of  a cursor  super imposed on 
the  p lo t .  The cursor  can be moved w i th  the  cursor  menu keys .  
In  F ig .  1 .  the  cu rsor  i s  inv is ib le  because  i t  co inc ides  w i th  the  
axes at the or igin. We move the cursor up off  the X-axis to make 
it more visible and over just to the left of the middle root by using 
theA and  ^  keys  (see  F ig .  2a ) .  P ress ing  the  INS key  d ig i t i zes  
the cursor  locat ion by  re turn ing i ts  coord inates  to  the s tack as  
an ordered pair  (x,y).  Now we move the cursor to the r ight of the 
i n te rsec t i on  as  shown  in  F ig .  2b  and  d ig i t i ze  a  second  po in t .  
Pressing the ON key exits the plot so that the two point coordinates 
are shown on the stack (Fig.  3a).  

Combine the two po in ts  in to  a  l is t  by execut ing ->LIST.  Then 
activate the equation solver by pressing! SOLVSOLVR. The result 
ing d isplay is  shown in Fig.  3b.  

Final ly,  press the menu key X to store the l ist  as a f i rst  guess, 
then (Fig.  X to solve for  the 12-digi t  root  = .337301614083 (Fig.  

(a) 

(b) 

F i g .  1 .  ( a ) P l o t o f x 3 - x z - x  +  
ta l  range expanded.  

(b) Plot of (a) with horizon- 

(a) 

(b) 

Fig. 2. (a) Digi t iz ing point just to lef t  of middle root of plotted 
equat ion,  (b)  Dig i t iz ing point  just  to r ight  of  middle mot.  

3Â¡ 
2Â¡ 
1Â¡ 
S T E Q  f t C E Q  F M I N  F - M H H  I N D E P  D R A M  

C . 3 i . 5 >  

(a) 

(b) 

.337301614033 
K  E F T =  F ; T =  

(c) 
Fig.  3.  (a)  Dig i t ized points f rom Fig.  2.  (b)  Combining points 
in (a) into a l ist ,  (c) Solut ion for middle root of equation using 
l ist  of points from (b).  

3c) .  The message Zero ind icates that  the express ion evaluates 
to machine zero at  that  point .  

Other HP-28C plot t ing features inc lude:  
â€¢ Autoscaling for statistical data plots 
â€¢ Turning on specified pixels 
â€¢ Pr int ing display images on the opt ional  HP 82240A Infrared 

Printer. 

Gabe L.  Eisenstein 
Development  Engineer  

Handheld  Calcu la tor  and Computer  Operat ion  
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(cont inued f rom page 14)  

3. + examines its arguments, finds that one is symbolic, 
and so returns the symbolic sum 2 + (X + Y). 
4. C is evaluated. Since it is a formal variable, it just returns 
its name as shown in Fig. 3b. 
5. Finally, * returns the symbolic result (2 + (X + Y))*C. 

In addition to mathematical functions that can be in 
cluded within algebraic expressions, the HP-28C provides 
a host of operations that are not representable as functions, 
but can be applied to algebraic objects. These operations 
include expansion, collecting terms, subexpression sub 
stitution, symbolic variable isolation, and an expression 
editor that permits rearranging an expression according to 
standard rules of algebra. See the box on page 13 for an 
example of the formulation and solution of a problem in 
volving algebra and calculus on the HP-28C. 

This application of RPN principles to algebraic expres 
sions reflects the conviction that algebra, perhaps even 
more than numerical calculation, is an interactive, postfix 
process where a user decides how to proceed with a calcu 
lation according to step-by-step, intermediate results as the 
calculation develops. An important aspect of the approach 
is that the HP-28C is the first calculator to offer a smooth 
integration of RPN and algebraic interfaces. A user can 
enter an entire calculation in expression form, as the user 
might using BASIC, or where appropriate, the calculation 
can be broken into subexpressions for partial evaluation, 
with the intermediate results conveniently held on the RPN 
stack. 

Type Dispatching 
The inspection of arguments described above for alge 

braic functions is an illustration of the more general type 
of checking and dispatching steps common to most HP-28C 
operations. Every HP-28C command has the following 
structure: 

check_arguments, type_and_dispatch, dispatchjist 

The check_arguments process determines if the appropriate 
number of arguments are present, and issues the "Too Few 
Arguments" error if not. Note that this error condition is 
not possible on previous RPN calculators, in which the 
four stack levels are never empty. The check_arguments pro 
cess also saves copies of the arguments for possible retrieval 
by the LAST command. 

The type_and_dispatch process returns a code representing 
the type and position of the arguments and then inspects 
the dispatch list until it finds a matching code. Adjacent 
to each argument code in the dispatch list is a pointer to 
the executable program code for the command corre 
sponding to the argument combination. If a match is found, 
execution branches accordingly. If the dispatch list is 
exhausted without a match, the "Bad Argument Type" 
error is returned. 

The type-and-dispatch command structure has some use 
ful side benefits: 
â€¢ The USE option, available when the CATALOG operation 

is active, inspects the dispatch list to create a stack-use 
table to guide a user in the correct use of a command. 
This provides an important help facility at very little 
cost in ROM use. 

The type_and_dispatch word is different for commands that 
are legal in algebraic objects and those that are not. In 
algebraic entry mode, it is only necessary to check this 
word to determine whether to execute a command or add 
its name to the command line. Similarly, the check_argu- 
ments word indicates whether to append an opening paren 
thesis to an algebraic command name as a typing aid. 
In addition to the type and dispatch encoding, algebraic 

functions also include pointers to the code for their corres 
ponding derivative and inverse functions. 

Recovery Features 
The LASTX feature on RPN calculators, which returns the 

contents of the X register before the most-recent X-register 
operation, serves a dual purpose. First, it provides a means 
of recovering from an incorrect operation â€” thus pressing 
LASTX - LASTX restores the stack to its state preceding an 
inadvertent press of the + key. Second, it permits repeated 
use of the same argument â€” pressing SIN LASTX COS + com 
putes sin x + cos x. Both of these features are present in 
the HP-28C, but they have been separated and extended 
into more powerful operations. 

The error recovery feature has evolved into the HP-28C's 
UNDO operation. When ENTER is executed by pressing the 
ENTER key or any other key that does an automatic ENTER, 
a copy of the current stack (object pointers) is saved in a 
temporary environment. After the command line is 
evaluated, the effects of the evaluation on the stack can be 
canceled by pressing the UNDO key, which replaces the 
new stack with the saved version. 

All HP-28C commands that use stack arguments save 
copies of those arguments that can be retrieved by the LAST 
command. LAST pushes the recovered arguments onto the 
stack like its LASTX predecessor, but returns all (up to three 
â€” no command uses more) of the arguments, not just the 
one returned by LASTX. 

These recovery features, together with the four-level 
command stack that saves the most recent command stack 
entries, can consume a significant amount of RAM in certain 
circumstances. Each of the three features can be disabled by 
the user when more RAM is required for an operation. 

Development  Methodology 
The HP-28C firmware was developed in a year by a small 

team using the RPL operating system and language (see the 
article on page 21). The use of a highly structured language 
was necessary for the implementation of symbolic mathe 
matics, but also yielded a significant increase in productiv 
ity compared with previous products, which were coded 
entirely in assembly language. A RAM-based prototype HP- 
28C was available only three months after beginning the 
project, which made possible significant design changes 
based upon customer testing of the prototype. Thus, the 
emphasis throughout the project was on rapid prototyping 
of features followed by design modifications based on ac 
tual keyboard use, rather than detailed advance specifica 
tions. 
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Mechanical Design of the HP-18C and 
HP-28C Handheld Calculators 
by Judi th  A.  Layman and Mark A.  Smith  

THE HP-18C AND HP-28C represent a new mechani 
cal design for HP handheld calculators. These prod 
ucts use a vertical clam-shell format with a simpli 

fied keyboard in a coat-pocket-size package. Using the pro 
ductivity advantages provided by the use of CAD/CAM 
(computer-aided design and manufacturing) tools, the 
package was designed for manufacturability and then 
thoroughly tested for reliability to ensure quality perfor 
mance for the customer. 

Layout 
The HP-18C/28C package was the first product at HP's 

Corvallis site to be designed principally on a CAD/CAM 
system. This system improved communication between de 
sign engineers and manufacturing engineering .aring the 
initial layout phase of the product. It also simplified check 
ing tolerances and provided the expedient automatic trans 
fer of information to the tooling shop for plastic part molds. 
CAD allowed easy analysis of the design such as package 
cross sections and the graphical simulation of case rotation 
(Fig. 1). 

Case Design 
The continual design challenge for handheld calculator 

products is providing more functionality in smaller pack 
ages. Many components in the HP-18C and HP-28C are 
integrated to provide more than one function (Fig. 2). This 
minimizes volume in the product and also decreases the 
part count for production assembly. For example, the bot 
tom cases not only provide the cosmetic and protective 

shell, but also support the flexible keyboard assembly. In 
addition, the case half that houses the alphabetic keys is 
made to deflect slightly to create a latch which holds the 
product closed. 

Heatstaking is a proven manufacturing process for pro 
viding uniform keyboard support. Using this in combina 
tion with the case assembly eliminates the need for screws. 
This process was easily automated because it is controlla 
ble, requires fewer parts that are easily presented to the 
tooling, and results in a sturdier product. The industrial 
design team chose to give the outside of the HP-18C and 
HP-28C a clean appearance by keeping the package simple 
and free of overlays. Because of this, reverse ejection is 
used to move the molding gate remnant from the cavity 
(outside) to the core (inside) side of the part. Contrary to 
convention, heatstaking is done from the top side of the 
keyboard. The existing keyboard overlay is used to cover 
the heatstake rivet heads in addition to providing the sec 
ondary function labels. The choice of polycarbonate as a 
case material helps ensure that the product will survive a 
one-meter drop on all six sides. 

Dense Packaging 
A hybrid printed circuit board (see article on page 25) 

is used because the high pin count of the two display driver 
ICs did not allow them to be packaged in the conventional 
manner for a surface-mounted device. Because of the high 
cost of the polyimide substrate material used for hybrid 
circuits, the board size was kept as small as possible. In 
all, five ICs, twelve discrete surface-mounted devices, and 
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four discrete leaded devices are contained on this board. 
The hybrid portion on one side of the board includes two 
display driver chips and the CPU chip with 263 wire bonds. 
The chips are surrounded by a molded plastic dike and 
encapsulated in epoxy. On the other side of the board, all 
the surface-mounted devices, including two 44-pin quad 
packs, are loaded by robots and then vapor phase soldered. 
The four discrete leaded devices that cannot be vapor phase 
soldered have their leads preformed in a fixture and then 
are loaded by hand. One of these leaded devices is an 
infrared light-emitting diode (LED) used to transmit data 
to a detached optional printer via an infrared link. In addi 
tion to the components, the hybrid circuit board has contact 
pads for 21 key lines, a beeper, battery springs, and 178 
lines to the liquid-crystal display (LCD). 

LCD Interconnection 
The liquid-crystal display is a four-line, 23-character dot- 

matrix display with seven status annunciators. The 178 
pads for connecting the circuit board to the LCD have a 
pitch of 0.032 inch and are laid out in two rows along the 
edges of the hybrid circuit board. The connection between 
the LCD and the hybrid board uses two elastomeric (zebra) 
connectors. To establish and maintain proper registration 
between the hybrid board and the LCD pads, the position 
of the LCD pads is determined optically. The LCD is then 
secured in a stainless-steel display clip using double-sided 
pressure-sensitive adhesive tape. The display clip is then 
positioned into the hybrid board using a hole that has been 
precisely punched with an accuracy of Â± 0.002 inch relative 
to the display pads. This assembly is then tested and 
crimped. 

Fig. package plot drawing of a longitudinal cross sect ion of the closed package (top) and a plot 
(bot tom) of  opened case hal f  rotated in several  posi t ions.  
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Although this basic display assembly concept has been 
used successfully in two earlier calculator product lines. 
a few improvements were made in the HP-18C Business 
Consultant. The first is the inclusion of a relief in the dis 
play clip along the edges of the LCD to eliminate stress 
concentration on the display glass. This allows the product 
to be dropped from a height of one meter onto all six faces 
with no functional damage. The second improvement is 
that the legs of the display clip are flared to allow a lead-in 
for easy assembly. The precisely punched hole not only 
establishes proper registration of the LCD to the hybrid 
board pads during assembly, but also ensures that the LCD 
will not shift after assembly. 

Hinge Link 
A compound hinge is used to connect the two halves of 

the HP-18C/28C case because it allows the product to be 
used in different positions throughout its 360 degrees of 
rotation (Fig. 1). By allowing full rotation, this also prevents 
a situation where the product might be highly stressed if 
dropped. Several methods of fastening the two hinge halves 
were investigated. These included gluing, ultrasonic weld 
ing, heatstaking, and fastening with screws. Even though 
it requires more complex plastic tooling, a snap-fit design 

is used because it offers the most repeatable, simplified 
process for assembly. 

The hinge pins on which the link rotates perform several 
functions. They are conically tapered to provide axial self- 
centering of the hinge piece in each case half. The tip of 
the hinge pin is designed to preload against the inside of 
the hinge link. This creates frictional drag which provides 
a high-quality feel to the product as it is rotated. The fragile 
tip is supported by the main body of the hinge pin which 
carries any high-stress loads. The hinge pins are open on 
the top for inserting the interconnect portion of the 
keyboard into the case halves. 

Keyboard and Flex Interconnect 
The technology used for the integrated keyboard and 

flexible interconnect is conductive silver ink screened onto 
a polyester film substrate. This design allows a single sub 
strate and screening to be used for both keyboards and the 
flexible interconnect, thus improving the reliability of the 
system. Twelve key lines run through the 0.140-inch in 
side-diameter hinge link between the two keyboard halves. 
Because of the trace width limitations of the screened silver 
ink process, a complex folded design was implemented to 
run four layers of the substrate through the hinge link with 

I R  T r a n s m i t t e r  

Bat ter ies  

v v w w  
W W W  

W W W  
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F l e x i b l e  M e m b r a n e  
K e y b o a r d  

N u m e r i c  K e y b o a r d  

K e y b o a r d  P r o t e c t i o n  
Layer  

F ig .  excep t  key  v iew  o l  pa r t s  i n  HP-28C.  The  HP-18C i s  t he  same excep t  f o r  d i f f e ren t  key  
co lors  and labels  and one less ROM on the hybr id  c i rcu i t .  
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each layer carrying three lines (see Fig. 3). Inside the link, 
the four layers run along one hinge axis, cross over to the 
other hinge axis, and return while being supported at both 
ends of each parallel segment. 

The torsional stress is induced in a controlled fashion. 
Controlling the motion of the flexible circuit minimizes 
locations of stress concentration. As the product is rotated 
through its full range, the four flexible layers are twisted 
in torsion. Torsion was chosen over bending because it is 
less damaging to the conductive ink. The reliability of this 
design was verified by cycling each leg of the flex circuit 
through 180 degrees for two million cycles without a failure. 

The two keyboards that are an integral part of this flex 
circuit use the same screened conductive ink for the 
keypads and circuit matrix. The keyboard technology is 
typical of that used for membrane keyboards. After the 
silver ink is cured, a second screening operation deposits 
a carbon/graphite layer over the silver ink traces. This pro 
tects the exposed key line connections to the hybrid circuit 
against silver migration. The carbon screening process also 
allowed the ready incorporation of 21 resistors for BSD 
(electrostatic discharge) protection. In one pass, a resistor 
is created in each key line by using the screened carbon 
to bridge a controlled gap in the silver traces. A pressure 

F ig .  3 .  Doub le  exposure  pho tograph  showing  shape  o f  i l ex  
c i rcu i t  and i ts  locat ion wi th in the h inge assembly.  

connection is made between the carbon on the key lines 
and the gold pads on the hybrid circuit board using two 
low-compression-set urethane foam pads. 

Tactile feel for the 72 keys is provided by two separate 
dome sheets of formed polyester. A spacer layer supports 
the domes while also providing a vent at pressure extremes 
and whenever a dome is actuated. These layers are all 
attached to create a single part for ease of product assembly. 
The keyboard assembly was tested to half a million key 
cycles with no electrical failures and minimal degradation 
in tactile feel. Life testing was done at both ambient temper 
ature and under environmental conditions of high temper 
ature and humidity. Several iterations of key design and 
testing were required to achieve the life and tactile feel 
desired. 

ESD Protection 
ESD testing has consistently been a challenge in trying 

to release products to production on schedule. The testing 
typically cannot be performed until late in the project be 
cause the completed product is required. Fixes that are a 
result of ESD testing, therefore, do not have time to be 
integrated into the product properly. With this in mind, 
special consideration was given to ESD protection early in 
the design of the HP-18C and HP-28C. A prototype model 
was built using a similar existing chip set on a prototype 
hybrid circuit. Results of this testing were incorporated in 
the final circuit design. Additional testing revealed a 
localized ESD susceptibility. As a result, an aluminum 
shield is incorporated in the back side of the keyboard 
assembly. This shield provides an alternate path for electri 
cal discharge with lower impedance and higher capaci 
tance to ground. Hence, the HP-18C and HP-28C can sur 
vive a 25-kV discharge with no permanent damage. This 
is a significant achievement for a handheld portable prod 
uct with no external ground. 

Conclusion 
The attention given to manufacturability in the initial 

phases of development was worth the effort. The HP-18C 
Business Consultant was a fast-track project requiring 18 
months to develop. Even so, it made a smooth transition 
from the lab to production. It was up to mature volumes 
and yields after only four months in production. 

The mechanical design of the HP-28C leveraged the work 
done on the HP-18C. It required only the addition of one 
ROM to the hybrid circuit and different overlays and key 
nomenclature. 
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Symbol ic  Computat ion for  Handheld 
Calculators 
b y  C h a r l e s  M .  P a t t e r n  

A CALCULATOR OR COMPUTER operating system 
is primarily a set of conventions for memory organi 
zat ion,  data s tructures,  and resource al locat ion 

combined with a set of software tools to aid in performing 
operations in accordance with those conventions. In con 
trast, an application is software built using the resources 
and conventions of the operating system. 

In software development cycles for  previous HP cal  
culators the overall scope of the project was small enough 
that it did not make sense to segregate code into operating 
system and applications, or even to formalize many of the 
conventions developed during the course of the project. 
However, we have passed the point at which it makes sense 
to create such disposable code for  each new machine.  
Paradoxically, this has come about through our attempts 
to make calculators simpler, rather than more complicated. 
Simpler, of course, means simpler to humans, and what is 
simple and seemingly natural to humans is anything but 
simple and natural from the point of view of the machine 
(and vice versa). 

In 1984 we began the design of an operating system to 
meet the needs of future calculators and handheld comput 
ers. 

Design Goals 
The design goals for the system were strongly influenced 

by the orientation of various research and development 
projects under way at the time. The goals included: 
" Supporting symbolic mathematics operations in a hand 

held computing environment 
" Allowing for maximal trade-off of ROM space for RAM 

space 
â€¢ Providing a compact, extensible system able to support 

a variety of handheld computation systems 
â€¢ Providing a rapid prototyping environment for calculator 

development 
$l Paving the way for future expert-system capabilities. 
In the remainder of this article, I will try to explain what 
these goals entail,  how the design team attempted to ad 
dress them in the RPL operating system, and something of 
how the features are used in the HP-28C. 

Design 
The characteristic that most clearly differentiates a sym 

bolic math system from numerical systems is the ability to 
use an expression (or more generally, a program) as both 
a procedure to run and as data to manipulate. An example 
that illustrates this requirement is the derivative operator. 
Suppose you were to implement the derivative operator 
on your programmable calculator so that you could take 
the derivative of a program. You would need to find some 
way to have the program passed to the derivative program 

unevaluated, since if it were evaluated all you would get 
as a result would be a number. Your derivative program 
would need to take the argument program apart, compute 
the derivative, and reassemble the result into a new pro 
gram. 

In the process of investigating the feasibility of imple 
menting symbolic math operations on a calculator, the de 
sign team examined a variety of operating systems, includ 
ing BASIC, Forth, and Lisp. While any of these systems 
can be made to support the capabilities necessary for sym 
bolic math, it is Lisp that most fully integrates them into 
the structure of the system. On the other hand, the efficient 
memory management scheme of Forth, along with its RPN 
style consistent with previous HP calculators, made it a 
serious contender as well. The ultimate result is a combi 
nation of features from both Lisp and Forth that we call 
the ROM-based procedural language, or RPL. 
RPL and Lisp.  Features RPL has in common with Lisp 
include: 
6 The notions of atomic and composite objects and mech 

anisms to create and dissect composite objects 
a Strict call-by-reference protocol 
1 The quote operation, whereby an unevaluated object can 

be passed as an argument 
* Temporary (or lambda) variables useful in defining func 

tions 
â€¢ A temporary object area and a garbage collection scheme 

for reclaiming memory from this area. 
RPL and Forth. Features RPL has in common with Forth 
include: 
â€¢ Reverse Polish notation (RPN) 

Arguments passed to operators on an unlimited stack 
* Full complement of stack-manipulation operations 
1 Threaded execution. 

However,  RPL differs  from both Lisp and Forth in a 
number of significant respects. These differences are direct 
responses to the challenges posed by a handheld computing 
environment.  While great strides have been made in in 
creasing the amounts of random access memory available 
in handheld calculators at a reasonable price, RAM is still 
a relatively scarce commodity. Similarly, while the execu 
tion speed of central  processing units at  a given power 
consumption has increased dramatically, so have the over 
all power requirements for calculators. Consequently, cal 
culator CPUs are often run at a leisurely pace compared to 
their rated speed. These two facts have had an especially 
significant impact on the design of RPL. 

In RPL the fundamental data structure is an object. An 
RPL object is similar in design to a Forth word, and consists 
of the address of the executable code that determines the 
type of the object (the prolog), and the data that makes up 
the body of the object (Fig. 1). 
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Objects can be classified as either atomic or composite. 
The data part, or body, of a composite object consists of a 
sequence of objects and/or addresses of objects terminated 
with a special end marker (Fig. 2). Any other structure is 
classified as atomic. 

This composite object structure is quite different from 
its Lisp and Forth analogs. In Lisp, a composite object is 
a binary tree of addresses corresponding to the address of 
the first object and the address of the rest. In RPL, the 
address of both the first object and the rest are computable 
from the address of the object, but they are not explicitly 
part of the object. This implicit addressing tends to decrease 
RAM use when objects don't stay in RAM very long, as is 
the case for a limited RAM system. 

The Forth structure most analogous to the RPL composite 
is that of a secondary. The key difference is that in RPL a 
pointer to an object or a copy of the object itself can be 
included in a composite with operationally identical re 
sults. This embedding capability allows RPL to use address 
referencing when the addressed object is not likely to move 
(or be removed) and copy referencing otherwise. One con 
sequence of this structure is that object addresses within 
composite objects can reference objects within other com 
posite objects (Fig. 3). This capability also allows for more- 
sophisticated memory compaction schemes. 

Object  Types 
Seventeen object types are currently defined for the RPL 

system although object types can be added and removed 
from the system in a relatively straightforward manner. We 
can break down the atomic objects further into classes de 
pending on certain characteristics of their prologs. The 
classes are identifier class, data class, and procedure class. 
Identifier Class Objects. There are three object types in the 
identifier class: ordinary identifier, temporary identifier, 
and ROM pointer. An ordinary identifier is a self-executing 
variable name. When an ordinary identifier is executed, it 
searches through the user's variable area for the value 
bound to the variable name, and executes the bound object. 

A temporary identifier is similar to an ordinary identifier, 
except that when executed, it searches through a stack of 
temporary environments for its bindings and returns the 
bound object without evaluating it. 

A ROM pointer is used in place of the address of an 
object when the referenced object is in a plug-in ROM 
which can move, or be removed from the system. When a 
ROM pointer is executed, it executes the object it refer 
ences. 
Data Class Objects. Data class objects have the property 
that when executed, they merely return themselves. These 
objects include: 

Lower Addresses 

Address of  Prolog 

Higher Addresses 

Fig.  1 .  Structure of  an RPL object .  

Lower Addresses 

Address of  Prolog 

Object or 
Address of  Object  

Object or 
Address of  Object  

End Marker  

Higher Addresses 

Fig.  2 .  St ruc ture  o f  a  composi te  ob ject .  

fc Standard and extended-precision floating-point real and 
complex numbers 
Sequences of characters and sequences of hexadecimal 
digits 
Unsigned short binary integers 
Arrays and linked arrays of objects of uniform type. 
An unusual data class object supported by RPL is the 

RAM/ROM pair. A RAM/ROM pair is essentially a pair of 
name-object association lists, one of which resides in built- 
in or plug-in ROM, and the other of which resides in RAM. 
It embodies the idea of an extensible ROM-based vocabu 
lary with subvocabularies and context switching. 
Procedure Class Objects. Procedure class objects actually 

Address of  Prolog 

Object or 
Address of  Object  

Address of  Object  

Object or 
Address of  Object  

End  Marke r  

Address of  Prolog 

Object or 
Address of  Object  

End Marker 

F i g .  3 .  A n  a d d r e s s  w i t h i n  a  c o m p o s i t e  m a y  r e f e r e n c e  a n  
object  wi th in another  composi te.  
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do something when they are executed. There is only one 
type of atomic procedure class object, and that is the 
machine-code object. The body of a machine-code object 
contains a sequence of instructions, interpretable by the 
native CPU of the system, which are executed when the 
object is executed. 
Composite Objects. There are three composite object types: 
the list, which is data class, the program, which is proce 
dure class, and the algebraic expression, which is also data 
class. The three types have a very similar internal structure, 
with a program body being a refinement of a list body, and 
an algebraic expression body being a refinement of a pro 
gram body. 

Support ing Symbol ic  Math 
Systems that support symbolic mathematical capabilities 

are often classified by the amount of translation done in 
converting from a user's typed input to the internally de 
fined data structures. A system is deemed to be radical if 
the translation is extensive and conservative if little trans 
lation is done. In these terms, the HP-28C is very conserva 
tive. The most significant translation done is converting 
the user's input from algebraic to reverse Polish notation. 
The decision to follow this approach was motivated by a 
variety of factors. 

One motivation for conservative translation was to 
maximize the perceived responsiveness of the system. In 
a highly interactive system with the range of processing 
speed available in a handheld environment, data entry and 
translation can occupy a large fraction of the overall pro 
cessing time. A simple translation minimizes this operating 
overhead. 

Compact representation was a second motivation. Stan 
dard mathematical notation has evolved over the centuries 
toward a very compact encoding of the information relevant 
to the problem at hand. Our theory is that if a user types 
in an expression in a certain form, that form is likely to 
reflect important aspects of the problem the user has in 
mind. Those aspects are likely to become hidden in any 
radical translation of the form of the expression. 

Another motivation was pedagogical. The HP-28C is de 
signed to be a teaching tool as well as a problem solver. 
We wanted to provide operations that resemble pencil-and- 
paper operations so that the user can follow and/or choose 
each step of the operation. To allow this, the internal struc 
ture of an expression must correspond closely to the dis 
played form of an expression, and hence to the form that 
the user types in. 

A final motivation was the uniformity of structure af 
forded by minimal translation. The internal structure of an 
expression is the same as that of a program. Thus, no special 
evaluation mechanism is needed to run an algebraic expres 
sion. 

Pattern Matching 
Pattern matching is another technique commonly used 

in symbolic math systems. A variety of pattern matching 
tools are used at a variety of levels in the HP-28C. The 
lowest-level pattern matching tool is type dispatching, 
wherein the data types of a set of objects on the stack are 
matched against a set of templates and the resulting match 

determines the operation to be applied in this case. This 
structure can be observed in the HP-28C's CATALOG opera 
tion. Each function includes a type-dispatching segment 
and the CATALOG operation examines the templates in 
cluded in the function to generate the various possibilities 
shown by pressing the USE softkey in the CATALOG menu. 

At the highest level, an expression-structure pattern 
matcher compares an expression with a set of templates. 
The resulting match determines the operation to be per 
formed. 

Between these two pattern levels are a number of more- 
specialized pattern matching utilities which are especially 
useful in the standard evaluation and simplification al 
gorithms. Although these pattern matching utilities are 
each quite narrow in scope, the uniform RPN structure of 
expressions and programs, the ability to use programs and 
expressions either as executable procedures or data, and 
the ability to dissect and construct programs on the fly, 
enable quite general pattern matching operations to be con 
structed easily. 

Symbolic operations are typically defined recursively, 
that is, the result of applying an operation to an argument 
is defined in terms of the result(s) of applying the operation 
to simpler argument(s). In this way, the operation need 
only be given for the simplest cases, together with a method 
for reducing a more-complicated case to simpler cases. This 
definition method is natural for symbolic operations and 
makes programming the operation simpler and less error- 
prone. 

The RPL operating system is designed to support recur 
sion in an efficient and flexible form. Efficiency is achieved 
through the uniform use of the stack for passing arguments 
to operations, the implementation of indirect execution 
instructions in the central processing unit, and other 
methods of minimizing the operating overhead inherent in 
function calls. 

Flexibility is achieved by the automatic management of 
temporary variable environments, and a full complement 
of control structures that can help minimize the unneces 
sary buildup of operating overhead. In the HP-28C it is a 
fairly common occurrence, for example, for a program to 
create another program and then pass execution control to 
the newly created program (which itself may create a new 
program), all at the same execution depth. While this is 
not the usual case for recursion, it does illustrate the kind 
of flexibility available in the RPL system. 

Trade-Of f :  ROM for  RAM 
In designing the RPL operating system, we decided to 

try to make use of the ROM available in a way that would 
allow us to get more use out of the limited RAM in the 
system. The idea is that if an answer exists in ROM, then 
it only needs to be referenced in RAM, and in effect it takes 
up very little room. While this seems like a straightforward 
technique, it was the determining factor in many of the 
design decisions encountered in implementing RPL. Some 
examples are the call-by-reference protocol, smart object 
creation, and embedded objects. 

The standard RPL functions take their arguments from 
the data stack and return their results to the data stack. 
The data stack, however, is not a stack of objects, but rather 
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a stack of pointers to objects, that is, memory addresses of 
objects. Thus every function is passed the addresses of its 
arguments and it returns the address of its result. It is 
crucial to the operation of the system that the objects ad 
dressed on the stack be allowed to reside anywhere in the 
system â€” in built-in ROM, in a movable ROM, embedded 
as part of the value of some user's variable, or within the 
temporary object area. The arguments themselves are not 
altered by the operation of the function (indeed, they can't 
be if they reside in ROM), but this is not necessary since 
all that is required is that the function return the address 
of the result, which again can reside anywhere in the sys 
tem. This protocol is put to good use in the HP-28C where 
a sizable number of frequently used objects, including one- 
letter variable names, are included in ROM. Furthermore, 
functions that return results equivalent to one of these ob 
jects do not create another copy in RAM but merely point 
to the existing copy. 

The composite-object creation and dissection operations 
also play an important role in RAM-saving aspects of the 
RPL system. Since any object can occur within a composite 
object either as an embedded object (the whole object 
copied in) or as an object pointer (only the address of the 
object is copied in), with functionally equivalent results, 
the composite object creation operation can choose to han 
dle objects residing in different areas of memory differently. 
If an object resides in ROM, only the address of the object 
is copied into the composite object. However, if the object 
resides in the temporary object area, the whole object is 
copied in, making it unnecessary to change the address 
within the composite object when the object is moved in 
memory. Other areas of memory with varying degrees of 
mobility are handled according to the needs of the system. 

When a composite object is dissected, it is never neces 
sary to copy any part of it. For example, if an object was 
embedded in some composite object in ROM, it is never 
copied to RAM, even if the original composite object is 
pulled apart. 

To get the maximum use out of ROM, it is sometimes 
necessary to be able to copy objects from ROM to RAM 
and have these copies act in the same way. With one excep 
tion, the currently defined object types operate the same 
in RAM and ROM. The exception is the RAM/ROM pair, 
which by definition has a RAM component in which a 
user's variable values can be stored. Even so, a RAM/ROM 
pair can be converted to a ROM-like structure (a so-called 
ROMP ART) which can itself then be referenced in a RAM/ 
ROM pair. 

Support ing a Variety of  Calculators 
RPL provides scaffolding for the construction of a system, 

as well as a basis for operation. The complete version has 
considerably more structure and functionality than was 
used in developing either the HP-18C or the HP-28C, al 
though the subsets used in these two machines are rather 
different. There are explicit points at which the system can 
be either contracted or expanded and still maintain logical 
coherence and system integrity. This allows RPL to be used 
in a variety of situations. 

Rapid Prototyping 
Taken together, the stack method for passing parameters, 

the call-by-reference protocol, and the possibility of embed 
ding arbitrary objects within procedures tends to result in 
very modular code. This modularity contributes to both 
the possibility of reusing code and the rapid generation of 
new code. Even when a programmer needs to perform 
nonstandard operations that require machine code, the sim 
ple interface with the stack, together with a complete set 
of memory management utilities, mean that a programmer 
can make full use of the central processing unit for the 
problem at hand. Since this eliminates resource allocation 
conflicts, the code is easier to write, test, and reuse. 

A typical version of an RPL system is composed of a 
number of parts, each part relating to some facet of the 
structure. These include: 
â€¢ Prologs: defining the execution behavior of each data 

type 
â€¢ Memory management: resource allocation in the tempo 

rary object area, memory movement, address updating, 
and garbage collection 
RAM/ROM pair management: identifier resolution, vari 
able store, recall, purge, ROMP ART manipulation, and 
context manipulation 
Predicate, logic, and address arithmetic: equality, order 
ing, NOT, AND, and OR operations, addition, etc. 

â€¢ Object creation and dissection: head, tail, nth-element, 
concatenation, composition, decomposition, length, etc. 

â€¢ Data stack manipulation: stack depth, duplicate, swap, 
etc. 
Data type conversions: character to integer, integer to 
character, etc. 

E Control structures: quote, evaluate, runstream manipula 
tion, loops, and temporary variable binding 

â€¢ Array manipulation: creating, redimensioning, access 
ing, and changing elements 

â€¢ Configuration: chip-level configuration, ROMP ART con 
figuration, and polling 
Exceptions: error trapping, error generation, and error 
handling tools 
Interface management: key and menu map manipulation, 
and edit buffer manipulation 

â€¢ Parser tools: token parsing and parser-generator tools. 
While the operations provided by the bare RPL system 

are quite elementary, they are sufficiently generic and sup 
ported by enough structure to make it easy to get a prototype 
of a new system going in a short time. Once the design of 
a prototype is ironed out in a standard RPL implementation, 
it can be optimized further by implementing new data 
structures and/or translating critical RPL procedure objects 
to more-specialized machine-code equivalents. 

Summary  
RPL is an operating system designed to support a variety 

of applications in a handheld environment. It shares a 
number of features with both Forth and Lisp systems, but 
has a number of features that allow it to operate in systems 
with quite limited RAM. The key design aspects include: 

The universality of structured objects 
â€¢ Implicit "tail" pointers in composite objects 
" Functional equivalence of addressed or embedded ob- 
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jects within composite objects 
â€¢ Strict call-by-reference protocol 
â€¢ Uniform parameter passing on an unlimited data stack 
â€¢ Automatic temporary variable management 
â€¢ Quoting operation to allow procedures to be passed as 

data 
I Full complement of RPN-style control structures. 

While we do not expect the RPL operating system to be 
used outside of HP's Handheld Calculator and Computer 

Operation, we feel that it provides a firm foundation for 
advances in software technology for handheld computing 
environments. 
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A Mult ichip Hybrid Printed Circuit  Board 
for  Advanced Handheld Calculators 
by Bruce R. Hauge, Robert E. Dunlap, Cornells D. Hoekstra, Chong Mum Kwee, and Paul R. Van Loan 

WHEN WE BEGAN the search for an 1C packaging 
and interconnect system for HP's new series of 
calculators, the design challenges were formid 

able. Chief among them was achieving an effective com 
promise among increased circuit density, reduced package 
volume, greater reliability, and lower cost. Ultimately, our 
decision was to proceed with a hybrid printed circuit board. 
No other packaging technology could meet the combined 
requirements of high pin count, low package profile, en 
vironmental stability, and low cost. 

The use of hybrid printed circuits is not new for HP. 
Beginning with development of the HP-41C Calculator 
nearly ten years ago, the technology has been designed into 
many of our handheld products. This evolution has led to 
the hybrid printed circuit board used in the HP-18C and 
HP-28C Calculators. 

The advantages of hybrid printed circuit boards are: 
B High density. The use of high I/O count chips (>100 

pads) with less than 25% of the area required by compar 
able discrete packages, multichip and multicomponent 
applications, and linewidth and spacing geometries of 
0.005 inch. 

â€¢ Design flexibility. A double-sided board allows flexible 
adaptation to layout requirements. Artwork changes are 
inexpensive and rapid, selective gold plating for 
wirebond areas can be used, and finished via hole diam 
eters can be as small as 0.0115 inch. 

â€¢ Solderability. Components can be added using a wide vari 
ety of surface mount or lead insertion solder processes. 

â€¢ High reliability. For example, customer line scrap on the 
latest HP-41C hybrid circuits is less than 700 ppm per 
1C, and the field failure rate is negligible. 

â€¢ Rapid design turnaround. Artwork changes can be done 
in five weeks, and assembly prototyping can be done in 
one to two weeks. 

â€¢ Low cost. The cost of a hybrid printed circuit compares 

favorably on a per-pin basis with all other medium-to- 
high pin-count package types. 

Features 
The two-sided hybrid printed circuit board used in the 

HP-18C and HP-28C Calculators measures approximately 
three inches by 1.5 inches (not including the tab for the 
infrared LED, see Fig. 1). The top side of the board (the 
side that mates with the liquid-crystal display of the cal 
culators) bears three custom ICs, two display drivers, and 
a microprocessor, which are epoxy die attached to the board 
and connected by a total of 263 gold wire bonds to gold- 
plated pads. The three ICs are encapsulated by an epoxy 
layer retained by a dike structure. The reverse side of the 
board bears two custom ROM chips in plastic quadpacks 
and nine passive surface-mounted components. In addi 
tion, four through-hole components are attached, including 
an LED for wireless infrared transmission of data to an 
accessory printer. The finished hybrid circuit with 18 com 
ponents constitutes virtually the entire electrical system 
of the calculator. 

Technology 
In its basic form, a hybrid printed circuit consists of one 

or more chips that are attached to a printed circuit board, 
wire-bonded, and then encapsulated to provide mechanical 
and environmental protection. The early plug-in video 
game cartridges, primarily designed to be inexpensive, con 
tained a chip mounted on a single-sided board. These 
boards required no gold plating except for their edge con 
nector, used aluminum wire bonding, and were encapsu 
lated with a glob of epoxy over the 1C. Because of their low 
cost and minimal environmental requirements, it was more 
cost-effective simply to replace defective cartridges, rather 
than develop a more reliable assembly. The hybrid process 
described here incorporates several improvements over 
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these "jelly bean" types of hybrid circuits. 
Printed Circuit Board. A high-temperature laminate, either 
polyimide or a modified polyimide is used. This allows 
the use of high-speed gold thermosonic bonding and pro 
vides an additional margin for high-temperature applica 
tions. 
Nickel/Gold Plating. The etched copper traces are confor- 

mally plated with a diffusion layer of nickel. Then high- 
purity, soft gold is conformally plated over the nickel. The 
conformal plating reduces the possibility of exposed cop 
per, which could lead to dendritic growth between adjacent 
traces. The nickel also provides a hard underlying surface 
for wire bonding. The gold plating provides an oxide-free 
surface for gold wire bonding and protection in harsh and 

Fig.  1  .  Front  ( top)  and back (bot  
tom) sides of hybrid printed circuit 
board .  Prec ise ly  punched rec tan  
gular  hole is  located at  upper  le f t  
in  top v iew and upper  r ight  in  bot  
tom view. 
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moist environments. 
Die Attach. A high-purity, silver-filled epoxy is used to 
attach the ICs to the board. This provides good thermal 
and electrical conductivity to the die-attach pad. 
Wire Bonding. Thermosonic (a combination of temperature 
and ultrasonic energy) wire bonding is used to connect the 
1C pads to the board traces. The use of gold wire with a 
diameter of 0.00125 inch and an average pull strength of 
15 grams provides extra margin at temperature extremes. 
Encapsulation. A low-ionic-content epoxy is used to en 
capsulate the ICs and their bond wires. Entrapped air is 
minimized by precuring the boards in a vacuum oven. The 
thermal coefficient of expansion and the cure cycle are 
important aspects of encapsulation that must be carefully 
controlled to minimize thermomechanical stresses on the 
ICs and bond wires. 

Development  Program 
Because of the high number of wire bonds (263), it is 

imperative to obtain the highest yield possible at this oper 
ation. Our defect rate goal of less than 100 ppm translated 
to a part yield at the wire bond operation of 97.4%. To 
achieve this, we needed the expertise of the people at HP's 
manufacturing facility in Singapore. Therefore, we added 
a Singapore engineer to our design team in Corvallis for 
six months to work on the tooling and optimization of the 
wire bonder. 

Tooling modifications were necessary to allow for bond 
ing boards processed in a panel configuration, rather than 
a single board at a time. This required changes to the X 
and Y travels of the bond head, a much larger heater block, 
and a different clamping arrangement. 

For the optimization, a partial factorial experiment was 
conducted to determine the primary parameters that affect 
bond quality. After this experiment was completed, an 
operating window study determined the limits of the key 
parameters. Table I outlines the results. 

Table I  

Key Bonding Parameters 

P a r a m e t e r  S p e c i f i c a t i o n  L i m i t s  

Temperature 
Power 

Sink depth 

Force 

Time 

160tol70Â°C 
40 to 45 pulses/s (die side) 
70 to 75 pulses/s (lead side) 
30 to 90 fim (die side) 
150 to 250 (Â¿m (lead side) 
40 to 50 grams (die side) 
90 to 100 grams (lead side) 
15 to 25ms (die side) 
35 to 45 ms (lead side) 

The choice of laminate for the hybrid substrate was nar 
rowed to materials that could withstand the wire-bonding 
temperatures and times without deterioration. FR-4 boards 
are normally not usable for thermosonic bonding since a 
high glass-transition temperature (Tg) is required. A mod- 
ified-polyimide laminate was chosen because of its rela 
tively high Tg (180Â°C), and its lower cost and ease of 

machinability compared with polyimide laminates. 
The mechanical design of the hybrid was determined to 

a large extent by the needs of the calculator design group 
and by the surface mount process in printed circuit assem 
bly. The board thickness was increased from the normal 
value of 0.031 inch to 0.047 inch to provide a more rigid 
substrate. The height of the encapsulating epoxy must be 
kept to less than 0.080 inch because of tight spacing be 
tween the board and the LCD assembly. A molded plastic 
dike is used to contain the epoxy and maintain a uniform 
thickness. 

To exploit automated board assembly fully and to 
maximize material use, the boards are delivered from the 
vendor in a four-board subpanel, using an interdigitated 
layout. The parts are kept in subpanel form throughout the 
hybrid and surface mount processes. Only at the hand-sol 
dering operation are the boards separated from the sub- 
panel. 

One of the special requirements is a precisely punched 
rectangular hole (see Fig. 1). This hole must be punched 
and referenced to the board artwork to an accuracy of 
Â±0.002 inch. The purpose is to allow the use of prealigned 
display assemblies (LCD plus crimped metal can). This 
differs from previous HP calculator assembly techniques 
that require the LCDs to be adjusted manually for each 
calculator. A vendor was located that had developed equip 
ment to achieve this. Once we proved the accuracy of the 
machine, we arranged for the precision-punching to be 
done by the board vendor. 

Some of the more severe tests for hybrid circuits are 
moisture resistance, thermal shock, and multicycle vapor 
phase soldering. We ran engineering tests to determine 
whether we had sufficient margin to pass our qualification 
tests. We saw no problems in the thermal shock and vapor 
phase soldering tests. However, during the moisture resis 
tance test, we discovered some procedural and humidity 
chamber design problems. By discovering and correcting 
these problems before the final qualification run, we avert 
ed any program schedule delays. 

Because of differences in the coefficient of thermal ex 
pansion between the printed circuit board, silicon chips, 
and encapsulating epoxy, mechanical stresses can develop 
during heating and cooling. After cooling the subpanel 
down to room temperature from an epoxy curing tempera 
ture of 150Â°C, a noticeable warpage of the subpanel de 
veloped, often greatly exceeding the allowable maximum 
of 0.075 inch. 

We focused on revising the cure cycle as the method to 
minimize the panel warpage. We needed to cure the epoxy 
as completely as possible, but not lock in a high state of 
stress. Hence, a two-stage cure cycle was implemented. 
The parts are cured for three hours at 125Â°C, then ramped 
down to 58Â°C over two hours. This results in parts that 
consistently pass the maximum warpage criteria. 

In a normal printed circuit board manufacturing process, 
the areas to be plated are defined by a negative resist on 
the copper-clad laminate. The exposed copper areas are 
then plated with additional copper, nickel, and gold. After 
plating, the resist is stripped off and the exposed copper 
between the plated areas is etched away. However, this 
results in traces with exposed copper on their sides. The 
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exposed copper can react with moisture and an applied 
bias to form copper dendritas. Hence, several plating en 
hancements were implemented to improve the reliability 
and reduce the costs. 

The first of these is to process the board in a conformal- 
plating configuration. This means that the copper etching 
is done before any plating occurs. Since the sides of the 
traces are now exposed during plating, the copper is sealed 
in by the nickel and gold plating steps, thereby reducing 
the likelihood of dendritic growth. 

For conformal plating, all of the features are electrically 
bused together. This is normally achieved by running small 
traces off the board for connection to the plating bus. How 
ever, since this hybrid board will have a metal can crimped 
around it to hold the LCD, we risked shorting to these 
plating traces. Therefore, an alternative method was de 
veloped. A plating ring is set up around each of the three 
die-attach pads. Small traces from each bond finger are 
connected to these rings, and a single trace is then run off 
the edge of the board in a safe area. After plating, a fine- 
diameter router is used to cut away each of the plating 
rings and open up the shorted plating traces. A solder mask 
layer on top of the rings and traces helps anchor them to 
the board to minimize any smearing of the copper during 
routing. 

To reduce the amount of high-purity gold plated on each 
board, a selective plating resist is screened on after the 
boards receive a flash gold plating 5 to 20 microinches 
thick. This resist exposes only the bond fingers, which are 
subsequently plated with 40 microinches of high-purity, 
soft gold for wire bonding. The resist is then stripped off. 

Test  Program 
The test software and hardware embodies many features 

absent in the evaluation of previous hybrid circuits. The 
prominent features are a modular test program, the use of 
solid-state analog multiplexers to leverage a few available 
tester channels for testing continuity on many pins, and a 
large free-standing test fixture for testing multihybrid 
panels. The test system tests a hybrid circuit with 250 test 
points in 25 seconds using a tester with 60 active test pins 
and 24 additional pads accessible via multiplexing. 

The hybrid test program was developed in two separate 
parts with the objective of achieving complete modularity 
for the two parts. One engineer wrote the hybrid program, 
which contains a shell for insertion of the display driver 
portion written by another engineer, a subset of the micro 
processor 1C test program (old), a system test (new), and 
initialization and exit routines for hardware checkout and 
operator interface (new). This engineer was also responsi 
ble for interfacing with the fixture designer and doing pro 
totype hardware debug. A second engineer was responsible 
for the display driver wafer test program (new), the display 
driver continuity test (new), the final integration of the 
test, documentation, and release to production. Program 
ming proceeded in parallel, with each test of the hybrid 
circuit able to be debugged independently. As needed, com 
mon hooks between the separate portions of the final hybrid 
test program were agreed upon to activate debug features 
and maintain summary data. 

As development proceeded, the display driver portion 

of the test program was periodically updated with more 
complete code by the transfer of a single block of code from 
the middle of the display driver wafer program. This 
worked well, and ensured that after release to production 
updates to the display driver wafer program could be easily 
transferred to the hybrid circuit test program. 

Even at the wafer level, the pin count (112) of the display 
driver chip was too high to access all pins of the part, even 
with multiplexing of the 60 tester channels to the 24 extra 
pads. In light of this, the display driver was designed to 
allow virtually complete testing of all 92 display pins via 
just four specially designed display pins. Using a combina 
tion of internal connectivity switching and scan path 
methodology, the display pins are tested for functionality, 
pin leakage, and pin shorts through these four pins. 

At the hybrid level, however, we were confronted with 
the need to confirm the presence of wire bonds to the 
display pins of the two display driver chips. This con 
tinuity check requires a physical connection to each dis 
play pin and is done by forcing a current into each pin and 
detecting the presence of a diode voltage drop across a pad 
protection diode. Originally it was anticipated we would 
need to do this test on a separate dedicated commercial 
continuity tester. However, we devised a solution that al 
lows the continuity test to be done as an integral part of 
the total hybrid circuit test. This provides the considerable 
advantage of eliminating the need for a separate commer 
cial continuity tester and being able to do a complete test 
in a single pass. 

The solution consists of a box of solid-state analog multi 
plexers which use a total of seven tester channels to test 
184 pins for continuity in less than 2 seconds. The box 
contains two identical circuit boards, each with six 16- 
channel analog multiplexers, one decoder, and one count 
er. The boards plug into edge connectors connected to the 
display pins and the tester control channels. To access any 
pin, the tester increments the counter, which together with 
the decoder selects an analog channel connected to a par 
ticular pin. Since all display pins are in just two contiguous 
groups, the only short circuits that are physically likely 
are adjacent pin shorts. Thus to identify shorted pins as 
well as open circuits we simply wired the box so that the 
multiplexer channels of the two boards are interleaved, 
that is, every other display pin is connected to successive 
channels on the same board. The tester opens one channel 
on each board simultaneously, forces a current into one 
channel and forces a zero level on the other. A short to an 
adjacent pin then results in a current path from the pro 
grammable measurement unit through one multiplexer 
board, through the short, and back out through the other 
multiplexer board to the tester channel forcing the zero 
level. Since the part is designed to allow detection of shorts 
via functional testing, no bad parts would be shipped if 
this shorts test were not done. However, the ability to iden 
tify of circuits directly rather than by interpretation of 
functional test data has proven to be indispensable in fail 
ure analysis and hybrid process monitoring. 

Test Fixture 
The design of this hybrid circuit implied some new chal 

lenges for the capability of the test fixture. Contact had to 
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be made to 250 points distributed on both sides of a printed 
circuit board about 3.5 inches long by 1.5 inches wide. The 
minimum spacing between LCD pads is 0.016 inch, with 
a pad size of 0.016 inch. We strongly desired a single fixture 
design that would test the hybrid circuits in both the four- 
board panel form during manufacture and the single-board 
form during final assembly. A fixture meeting these require 
ments was designed and implemented by HP's Handheld 
Calculator and Computer Operation. This fixture (Fig. 2) 
has also served well for line scrap analysis. 

The fixture weighs about 50 pounds and is manually 
operated and pneumatically actuated. The four-board panel 
(or single board) slides into the fixture on a movable X-Y 
stage. The panel or board under test is positioned by 
mechanical stops to align closely with the upper and lower 
spring-loaded test pin blocks. Activated by a manual 
switch, the upper and lower pin blocks then move to the 
center and sandwich the panel or board between them. Pre 
cision alignment is achieved by the mating of a fixture guide 
pin to the precisely punched hole in the hybrid circuit. 

Originally the test pins chosen for the fixture were solid 
cylinders with a conical cavity at the contact end, yielding 
a circular knife edge for contact. This configuration was 
chosen to satisfy the need for both a sharp edge to penetrate 
oxides and a large potential contact area to make up for 
registration errors. These pins performed fine when new, 
but soon tended to plug up with particulate contamination. 
Several months into prototype production, a switch was 
made to more conventional pencil-point, spring-loaded test 
pins, 0.027 inch in diameter, with favorable results. 

Initially, the connection to the fixture consisted of a 
three-foot-long bundle of coaxial cables terminated by con 
nectors at both ends, mating at the tester end to connectors 

wired to a DUT board mounted on a performance board. 
This arrangement was quickly discarded as noise levels 
were intolerable, and was replaced by a set of shorter cables 
terminated by connectors at only one end, and directly 
wired to the performance board at the other end (see Fig. 
2). The coaxial cable shields are all soldered to a brass 
grounding ring offset from the board. The center wires of 
the coaxial cables are soldered directly to the performance 
board pads writh strain-relief loops. Wire lengths are kept 
to a maximum of 18 inches. Inside the fixture, lines be 
lieved to be critical are also wired in coaxial cable to the 
spring-loaded test pins, while the remaining lines are 
twisted pair. As might be expected, even with this arrange 
ment noise is still a problem. This is compensated for by 
setting input levels to the rails and output levels to 0.33 
and 0.67 VDD. This is acceptable because all parts are tested 
to full level specifications at the wafer stage. 

Qualif ication Results 
The qualification plan for the hybrid circuit included: 

â€¢ 1000 hours of dynamic burn-in at 100Â°C 
â€¢ 168 hours moisture-resistance testing at 65Â°C and 90% 

relative humidity 
â€¢ 200 thermal shock test cycles 
â€¢ 5 vapor-phase solder cycles. 

The 1000-hour dynamic burn-in is normally done at 
150Â°C. We lowered the temperature to 100Â°C because of 
thermal limitations imposed by some of the soldered com 
ponents. Earlier moisture-resistance testing of hybrid cir 
cuits at 85Â°C and 85% relative humidity had shown poor 
results; 65Â°C and 90% relative humidity was felt to be an 
adequate condition. Table II summarizes the results. To 
date, the hybrid circuits in the HP-18C and HP-28C have 

Continuity 
Box 

perrre 
F i g .  2 .  T e s t  f i x t u r e  f o r  h y b r i d  
pr inted c i rcui t  board.  
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performed very well in the field, with no known reliability 
problems. This would appear to confirm the validity of our 
qualification matrix. 

Table I I  

Hybrid Circuit  Qual i f icat ion Results 
(Fai lures per number tested) 

T e s t  Q u a l i t y  
P r o c e d u r e  C r i t e r i a  R e s u l t s  

D y n a m i c  b u r n - i n :  1 / 1 2 9  1 / 1 2 9  
100Â°C, 1000 hours 

M o i s t u r e  r e s i s t a n c e :  2 / 1 0 5  0 / 1 0 5  
65Â°C, 90% R.H. 
500 hours 

T h e r m a l  s h o c k :  5 / 1 1 6  5 / 1 1 6  
200 cycles 

V a p o r  p h a s e  s o l d e r :  0 / 2 2  0 / 2 2  
5 cycles 

The six failures from dynamic burn-in and thermal shock 
were analyzed. The one failure during dynamic burn-in 
failed the self-test on the crimper tester. This part was 
subsequently retested on the HP 3065 Circuit Board Test 
System and it passed. It was then retested on the crimper 
tester and it passed. No further failure analysis was per 

formed. 
The remaining five units showed LCD pad leakage and 

functional failures during the first thermal shock tests. 
Examination after decapping showed fractures along the 
outside edge of the ICs. These problems were shown to be 
stress related, associated with the large size of the ICs and 
incomplete die-attach epoxy coverage under the corners. 
Additional units were built in Singapore, with particular 
care to obtain complete epoxy coverage under the ICs. The 
thermal shock test was repeated with no failures and no 
evidence of fracturing after decap. Singapore has since in 
corporated a screening method for the die-attach epoxy to 
ensure process integrity and reliability. 
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An Equat ion Solver  for  a  Handheld 
Calculator 
by Paul J.  McClel lan 

THE IDEAL EQUATION SOLVER reliably finds all 
solutions for an arbitrary variable in any equation 
defined by the user. Since this is provably impossible 

in general,1 more realistic expectations are to solve for an 
arbitrary variable in a wide range of equations, to provide 
understandable and reliable diagnostic information should 
the solver fail to find a solution, and to provide the means 
for using the solver to obtain multiple solutions of an equa 
tion if more than one solution exists. These were the design 
objectives for the equation solver in the HP-18C Business 
Consultant. 

A Combinat ion of  Direct  and I terat ive Solvers 
The HP-18C employs a combination of a direct solver to 

solve simple equations reliably and quickly and an iterative 
solver to search for solutions of more-difficult equations. 
The direct solver attempts to solve an equation by applying 
rules of algebra to isolate the unknown on one side of an 

equation. If it succeeds, the value of the other side of the 
equation is the solution to the equation. The iterative solver 
applies a trial-and-error search procedure to obtain a solu 
tion to the equation. 

The need for a combination of direct and iterative solvers 
became clear early in the development of the HP-18C. Al 
though iterative solvers can be applied to a wide variety 
of equations, they can, depending upon the starting point, 
take an unacceptable amount of time to find a solution or 
even fail for trivial equations. For example, consider at 
tempting to solve the equation 1/x = -0.1 for x by applying 
the secant method to the difference between the left and 
right sides of the equation. Fig. 1 illustrates the shape of 
the function 1/x + 0.1 near x = 0. With initial guesses -1 
and 1 the iterates converge to the pole at x = 0. With initial 
guesses 1 and 2 the iterates diverge toward =c. But with 
initial guesses -1 and -2, the iterates converge to the 
solution at x = - 10. Although a direct solver would handle 
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F ig .  1 .  HP-28C p lo t  o f  f ( x )  =  1 / x  +  0 .1 .  

this situation easily, direct solutions to other equations 
may not exist or may require an excessively complex direct 
solver. Furthermore, simple direct solvers will return at 
most one solution to an equation with multiple solutions, 
which forces the user to rewrite the equation to obtain 
alternate solutions. Hence, an iterative solver that can ac 
cept user-supplied initial guesses can be useful in tackling 
harder equations or obtaining multiple solutions without 
rewriting the equation. 

To solve an equation, the HP-18C first applies its direct 
solver. If the direct solver succeeds, the HP-18C displays 
that solution. If an arithmetic error occurs within the direct 
solver, then the HP-18C displays the message SOLUTION 
NOT FOUND. This screens some equations that obviously 
have no solution. If the unknown appears more than once 
or if it appears as the argument of a function that the direct 
solver cannot invert, then the direct solver fails and the 
iterative solver is invoked. 

Direct Solver 
As described above, the direct solver solves an equation 

by applying rules of algebra to isolate ihe unknown on one 
side of an equation. If the direct solver succeeds, the value 
of the other side of the equation is the solution. Direct 
solvers can fail, either because no closed-form solution 
exists or because the solution method is too difficult. The 
first case is illustrated by attempting to solve the equation 
xx = 2 for x. 

The second case is illustrated for the HP-18C by attempt 
ing to solve x + x = 1 for x. The solution of this equation 
is difficult for the HP-18C because, considering the prod 
uct's applications and resources, we decided that the HP- 
ISC's direct solver would perform no algebraic simplifica 
tion of the equation and thus would require the unknown 
to appear only once in the equation. 

The HP-18C parses an equation into an RPN internal 
representation of its left and right sides. It parses an expres 
sion as though it were an equation with the expression as 
the equation's left side and a zero on the equation's right 
side. 

The direct solver begins by scanning each side of the 
equation and finding the side containing the unknown. If 
the unknown appears in both sides, then the direct solver 
fails. Otherwise, it initializes the solution accumulator to 
the value of the other side and discards that side. The direct 
solver then repeatedly applies the following procedure to 
the solution accumulator and the remaining subexpression 
containing the unknown. If the subexpression consists of 
only the unknown, the direct solver has succeeded and it 
returns the value of the solution accumulator. Otherwise, 
the subexpression is an RPN expression ending in a func 
tion (or operator). If the direct solver does not know how 

to invert that function, it fails. Otherwise, it scans the func 
tion's arguments to find the occurrence(s) of the unknown. 
If the unknown appears in more than one argument, or in 
an argument position for which the direct solver does not 
know how to invert the function, the direct solver fails. 
Otherwise, it performs the inversion using the accumulated 
solution and the current values of any other function argu 
ment. If an arithmetic error occurs during this inversion, 
or if the result violates a rule of algebra, the direct solver 
terminates and displays the message SOLUTION NOT FOUND. 
Otherwise, the direct solver discards all but the argument 
expression containing the unknown and continues this pro 
cess. 

Two situations for which the direct solver aborts and 
reports SOLUTION NOT FOUND can be illustrated by solving 
the equations 1/x = 0 and 0/x = 1 for x. When the direct 
solver attempts to invert the first equation, it triggers a 
divide-by-zero error. When it inverts the second equation, 
it obtains the result x = 0, which indicates a divide-by-zero 
error in the original equation. 

For the most part, the HP-18C's direct solver will only 
invert functions that have unique inverses for the un 
known's argument position. However, we decided to also 
invert an expression containing an unknown raised to a 
power. When the power is even, the inverse can be either 
positive or negative. The HP-18C selects the positive in 
verse. Sometimes the choice the direct solver makes causes 
an arithmetic error later in the inversion process and the 
HP-18C reports SOLUTION NOT FOUND in spite of the fact 
that the equation has a solution that would have been found 
had the direct solver chosen a negative inverse. 

Even if the direct solver succeeds with its choice, other 
equation solutions may exist. The user can force the direct 
solver to choose the other inverse by rewriting the equation. 
In effect, the direct solver will select the negative inverse 
if the user negates the subexpression that is raised to the 
even power. This feature can be illustrated by the following 
two examples: 
â€¢ Solve the equation [l-(l/x)]2 = 1 for x. Because the 

direct solver takes the positive inverse of an expression 
raised to a power, later in the inversion process it en 
counters the simplified equation 1/x = 0 and reports 
SOLUTION NOT FOUND. If the original equation is rewritten 
as [(1/x)-!]2 = 1 the direct solver returns the solution 
x = 0.5. 

â€¢ Solve the equation l/(l-x)2 = 0.25 for x. The direct 
solver returns the solution x = â€”1. If the equation is 
rewritten as l/(x-l)2 = 0.25 the solver returns the other 
solution, x = 3. 
We decided not to invert other multivalued inverse func 

tions, such as integer part, because such functions have an 
infinite number of mathematical inverses (and a large 
number of machine-representable ones) and it would be 
more difficult for the user to specify any but the default 
inverse that the direct solver would supply. The iterative 
solver with its feature of accepting initial guesses from the 
user seemed better suited to solve such equations. 

I terative Solver 
The iterative solvers in the HP-18C and the HP-28C Cal- 
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culators are very similar. The HP-18C's iterative solver is 
described first and the HP-28C version's differences are 
described later. 

When a parsed equation is evaluated internally, the cur 
rent values of the equation's left and right sides are re 
turned. The iterative solver searches for a zero difference 
between the left and right sides by repeatedly varying the 
value of the unknown and computing the difference be 
tween the sides for that value. 

Suppose the goal is to solve the equation A(x) = B(x) 
for x. We represent the difference between the equation's 
left and right sides by f(x) = A(x)-B(xj. Then the goal is 
to find a value of x such that f [x] = 0. If the iterative solver 
succeeds, it has found a numerical solution to the user's 
equation or a zero of the user's expression and the solver 
terminates immediately and reports that solution. Because 
of  the  the  f loa t ing-poin t  a r i thmet ic  used  by  the  
HP-18C, a solution may satisfy the equation numerically 
but not mathematically. 

The set of values available to the iterative solver as can 
didates for the value of x is the set of machine-representable 
numbers available to the user. During the search process 
the iterative solver displays selected iterates to show the 
region being searched and the corresponding sign of f(x) 
to provide hints of the shape of the curve and the method 
in progress. The user can interrupt the search process by 
pressing any key. If an arithmetic error occurs during the 
evaluation of f(x) for some x, then f(x] is not defined for 
that value of x and we say that x lies outside the domain 
of definition of f(x). The displayed sign at that point will 
be a question mark. 

The iterative solver begins by claiming adequate scratch 
storage, setting initial search bounds b1 = â€” Â» and b2 = 
o>, and obtaining and ordering two distinct starting values, 
say Xj and x2, for the unknown x. It obtains x^ and x2 by 
using the last two values stored into x. The default values 
are zero. If these values are identical, one is perturbed by 
the solver. At this point we have b1<x1<x2<b2. The itera 
tive solver evaluates f(xa) and f(xz). If neither ^ nor x2 is 
within the domain of f(x), that is, f(x) is not defined for xa 
and x2, then the solver terminates with the message BAD 
GUESSES. If only one value, say xa, is within the domain 
of f(x), the solver sets b2 = x2 and attempts to find another 
value within the domain by first using a modified bisection 
search of the interval from x^ to x2. The search bound b2 
is reset to any sample value found out of the domain of 
f(x) during this search. If the bisection search exhausts all 
machine-representable values in the interval from x^ to x2 
without finding one in the domain of f(x), the solver sam 
ples the next machine-representable number just before x^ 
in the direction of bv If this value is also not in the domain 
of f(x), the iterative solver terminates with the message BAD 
GUESSES. Otherwise the iterative solver has the ordered 
pairs (xltxz) and (f1,fz) where b1<x1<x2<b2, f1=f(x1)^0, 

Fig .  2 .  HP-28C p lo t  o f  f (x )  =  l n ( x )  - 0 . 5 .  

If fa = f2, the solver searches for a slope by alternately 
extending the interval bounds xt and x2 until it either finds 
x1 and x2 such that fj ^ f2 or it exhausts the search interval. 
If during this slope-hunting process a sample value is found 
outside the domain of f(x), the search bound in that direc 
tion is set to that value and a modified bisection search is 

employed to find a sample value in the domain of f(x) in 
that direction. If the values sampled on one side, between 
bt and Xj or between x2 and b2, are exhausted, then sub 
sequent sample values will  l ie in the other side.  If  the 
solver fails to find a slope, it terminates with the message 
SOLUTION NOT FOUND. 

Otherwise, fa and f2 have different values. If they have 
the same sign, the iterative solver resets the search bound 
closest to the value generating the larger f(x) magnitude to 
that value, sets a counter to seven, and extrapolates in the 
direction of decreasing f(x) magnitude using a modified 
secant method.1 It continues searching in that direction 
until the value of f(x) changes sign, its magnitude increases, 
or the search interval is exhausted. 

In the last case, the solver terminates with the message 
SOLUTION NOT FOUND. If during this extrapolation a sample 
value is found that l ies outside the domain of f(x),  the 
search bound in that direction is set to that value and a 
modified bisection search is employed to find a sample 
value in the domain of f(x) in that direction. This can be 
illustrated by solving the equation V(x+ In x) = 0.5 for 

x. The left side of the equation is not defined for x< â€” In x 
(see Fig. 2).  With initial guesses of 1 and 2, the solver 
repeatedly samples within this undefined region, eventu 
ally succeeds, and reports x = 0.662195081464 as the ap 
proximate solution. 

If the value of f(x) does not change sign, but increases 
in magnitude during secant extrapolation, the search bound 
in the direction of search is reset to the sample value for 
x where the magnitude of f{x) increases. The solver then 
employs quadrat ic  interpolat ion and selects  the value 
where the fitted quadratic expression has minimum mag 
nitude as the next sample value. Depending upon the po 
sition of this fitted point, the solver resumes modified se 
cant extrapolation in the same or opposite direction. Each 
time quadratic interpolation is employed, a counter is dec 
remented and tested. Each time secant extrapolation finds 
a value for f(x) with decreasing magnitude, that counter is 
reset  to seven. When the decremented counter value is  
zero, the solver returns the last sample value as an approx 
imate solution and displays the values of the left and right 
sides of the equation for that solution. 

If the user immediately asks the calculator to solve the 
equation again for the same variable, the iterative solver 
uses initial guesses in the region of the last sample value. 
Hence approximations to local f(x) magnitude minima can 
be found by repeatedly solving for the same variable. How 
ever, the search procedure is designed to find zeros â€” not 
local magnitude minima. This case can be illustrated by 
solving the equation x2 + x = -1 for x with initial guesses 
0 and 1 (see Fig. 3). The solver reports the approximate 
solution, x = -4.99999994899E-1, with the values of the 
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F ig .  3 .  HP-28C p lo t  o f  f ( x )  =  x2  +  

equation's left and right sides for that solution. 
If f., and f 2 have opposite signs, or if during extrapolation 

their values change sign, the solver sets the search bounds 
to those sample values resulting in the values of t-Â¡ and f2 
having opposite signs and begins attempting to narrow the 
interval bracketing the change of sign. This process may 
employ an adaptive combination of modified bisection and 
secant, cubic, and hyperbolic interpolation to obtain a se 
quence of sample values. For each iteration where the sam 
ple value is within the domain of f(x), one of the search 
bounds is reset to that value and the interpolation process 
continues. The process continues until it finds one of the 
following cases: 
â€¢ A solution 
â€¢ Neighboring values x, and x2 bracketing a sign change 

in f(x) 
â€¢ A value out of the domain of f(x). 

The first case can be illustrated by solving the equation 
x2 + x = 6 for x with initial guesses 0 and 1. The iterative 
solver reports the positive solution x = 2. If the equation 
is immediately solved again for x, the solver again reports 
the solution x = 2. 

The second case occurs when the equation has a solution 
that is not representable in the HP-18C's 12-digit float 
ing-point format. (The set of 12-digit numbers includes 0, 
-1.00000000000 x 10~499 to -9.99999999999 x 10499, 
and 1.00000000000 x 10"499 to 9.99999999999 X 10499.) 
It can also occur if the function f(x) is discontinuous be 
tween two adjacent machine-representable values. In any 
event, the solver returns the value of Xj or x2 that gives a 
minimum f(x) magnitude as the solution. It stores the other 
value in a dedicated location such that if the user im 
mediately solves again for the same variable, xa and x2 are 
used as initial guesses. The solver also displays the values 
of the left and right sides of the equation for that solution 
if either x, or x2 is the only value sampled in the interpola 
tion process, or if the process strongly suggests that the 
result represents a pole. 

For example, with initial guesses 0 and 1, the solver 
returns the approximate solution x = 1.30277563773 to 
the equation x2 + x = 3. If the solver is immediately rein- 
voked it displays the values of the equation's left and right 
sides for the same approximate solution. For the first try, 
the solver is able to make some progress from the initial 
guesses and the data does not strongly suggest a pole. For 
the second attempt, the solver is unable to progress beyond 
its initial guesses so it returns the values of the left and 
right sides as a warning that the equation is not exactly 
satisfied. 

If the solver is applied to the equation x/(x2-2) = 1 with 
initial guesses 1 and 1.5, it returns the approximate pole 
x = 1.41421356238 and displays the values of the left and 

Fig .  4 .  HP-28C p lo t  o f  f (x )  =  x l f x2  -  

right sides of the equation for that solution. The solver in 
this case was able to make some progress from its initial 
guesses, but the process strongly suggested that the result 
was near a pole (see Fig. 4). 

In the third case the iterative solver splits the current 
search region, which brackets a change of sign in the value 
of f(x), at the out-of-domain value. We then have two inter 
vals, xa to gt and g2 to x2, where initially x-^gj = g2<x2. 
The points ga and g2 will later be adjusted such that the 
interval between g, and g2 defines a gap within which the 
function f(x) is presumed to be undefined. The solver alter 
nately samples values in the left and right subintervals 
using a modified bisection search. Each time, if the sampled 
value is out of the domain of f(x), the appropriate g bound 
is reset to that value and the iteration continues with a 
wider gap between ga and g2. If the value of f(x) at that 
sample value has the same sign as the value of f(x) at the 
corresponding x bound, that bound is reset to that sample 
value and the iterations continue with a narrower outer 
interval [xa , x 2] . The process continues until it either finds 
a solution, it finds a value for x where the sign of f(x) is 
the opposite of the sign at the corresponding x bound, or 
it exhausts both subintervals [x1,g1) and (g2,x2]. If the solver 
finds a value for x where the sign of f(x) is the opposite of 
the sign at the corresponding x bound, the solver discards 
the other interval and resumes narrowing the region around 
the change of sign in f(x) as above. 

This case can be illustrated by solving the equation 
Vx/(x + 0.3) = 0.5 for x with initial guesses -1 and 2 
(see Fig. 5). The left side of this equation is not defined for 
x in the interval from -0.3 to 0. With these initial guesses 
the solver first samples on either side of this interval and 
then in this interval, triggering the gap-narrowing process 
just described. Eventually the solver exits that process and 
finds the solution x = 0.1. 

If the solver exhausts both subintervals it returns the 
value of X} or x2 giving minimum f(x) magnitude as an 
approximate solution. This case can be illustrated by at 
tempting to solve the equation (x/(3x-l))3 = 1 for x with 
initial guesses 0.3 and 0.4 (see Fig. 6). The solver stores 
the other value in a dedicated location such that if the user 
immediately solves again for the same variable, x, and x2 
are used as initial guesses. The solver also displays the 
values of the left and right sides of the equation for that 

F i g .  5 .  H P - 2 8 C  p l o t  o f  f ( x )  =  V x / ( x  +  0 . 3 )  - 0 . 5 .  
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Fig. 6. HP-28C plot of f (x) = (x/(3x-1))3- 1. 

solution as a warning that the solution is not exact. 

HP-28C Iterative Solver 
The HP-28C's iterative solver assumes a higher level of 

sophistication on the part of the user. It also searches for 
a real solution to an equation or a real zero of an expression. 
It differs from the HP-18C version only in the manner that 
the user specifies initial guesses, how the solver displays 
current iterates, and the solver's termination display. 

The HP-28C uses the initial contents of the unknown to 
obtain up to three initial guesses, with zero as a default. 
The user specifies one initial guess by storing a real or 
complex number in the unknown. The HP-28C takes the 
real part of a complex number as an initial guess. The user 
can specify one, two, or three distinct initial guesses by 
including those guesses in a list and storing that list in the 
unknown. The HP-28C uses up to the first three distinct 
real numbers or real parts of complex numbers in the list. 
The reason for handling complex numbers in this way is 
to facilitate the user's specifying initial guesses obtained 
by digitizing points from plotted equations. 

The iterative solver is faster if it does not need to display 
iterates, so by default the HP-28C solver does not do so. 
However, the user can trigger the display of current iterates 
by pressing any key other than ATTN. Additional pressing 
of such keys has no effect and the solver purges the key 
buffer when it terminates. Pressing ATTN always aborts the 

iterative solver, which then returns a list of the three current 
iterates on the display stack and stores the list in the un 
known. 

If the HP-28C cannot obtain at least two values in the 
domain of f(x) using the initial guess(es) of the unknown, 
then it leaves the unknown unchanged and displays Bad 
Guess(es). If the HP-28C cannot obtain a slope, then it leaves 
the unknown unchanged and displays Constant. Otherwise, 
the HP-28C overwrites the initial contents of the unknown 
during the search process. When the search is complete, 
the solver returns a message and an exact or approximate 
solution on the display stack and stores the solution in the 
unknown. The HP-28C displays the message Extremum if it 
exhausts the search interval without finding a change of 
sign. If it finds a change of sign but not an exact numerical 
solution, it displays Sign Reversal. If it finds an exact nu 
merical solution, it displays Zero. 

The solver application menu has labeled softkeys that 
can be pressed to evaluate the left and right sides of the 
current equation for the current values of the equation's 
variables. The user can use these keys to inspect the quality 
of a solution in more detail. 
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Electronic  Design of  An Advanced 
Technical  Handheld Calculator  
by Preston D.  Brown,  Gregory  J .  May,  and Megha Shyam 

THE DESIGN of an advanced handheld calculator 
such as the HP-28C requires solutions of some spe 
cial problems: how to package the system in a limited 

space, how to provide power from three small batteries for 
six months, how to keep the cost down, and how to release 
the new design in less than 18 months. These challenges 
were met by designing three custom CMOS ICs, packaging 
the electronics using chip-on-board and surface-mount 
technologies, and using powerful design aids. The HP-28C 
includes a four-line liquid-crystal display (LCD), 128K 

bytes of ROM, 2K bytes of RAM, a clock, and an infrared 
transmitter for sending data to an optional detached printer. 
The HP-18C Business Consultant contains the same elec 
tronics, but only one ROM. 

The electronic design (Fig. 1) of the HP-28C provides a 
20 x improvement in computat ional  speed over i ts  pre 
decessor, the HP-15C. Custom ICs and custom packaging 
were required to achieve this functionality on a small cir 
cuit board measuring 3 by 1.5 inches. 

A hybrid board design (see article on page 25] is used 
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for the entire system. Two display drivers and the CPU are 
bonded directly to the front of the printed circuit board 
using 263 bonds. Two ROMs in flatpacks and the rest of 
the discrete components are placed on the back of the 
board. Pressure contacts are made from the board to the 
LCD on the front, and from the board to the keyboard on 
the back. The use of chip-on-board technology has proven 
to be reliable and cost effective. 

Custom Microprocessor  
Commercially available microprocessors have a number 

of limitations that make them unsuitable for use in a cal 
culator. They require too much power, many support chips, 
regulated supplies, or a wide system bus which takes up 
too much room on a printed circuit board. Hence, a custom 
microprocessor was developed for the HP-28C to avoid 
these problems. 

The processor used in the earlier HP-71B Handheld Com 
puter1 was an excellent starting point for the design; this 
processor already met the low-power and interconnect re 
quirements, but it would not run at 3V (the minimum bat 
tery voltage). By porting the design into the newer, smaller 
CMOSG process, the part price and the power supply re 
quirements were reduced and the speed was increased. 
At the same time, new instructions were added to improve 
data manipulation and the interrupt structure was en 
hanced. 

The instruction set of the processor is highly optimized 
for binary-coded decimal operations on both integer and 
real numbers. The main working registers in the processor 
are 64 bits long and are broken into three fields: the expo 
nent, the mantissa, and the sign fields. Individual nibbles 
or bytes of the registers can be handled independently. 

The processor has 16 input pins and 12 general-purpose 
output pins, some of which are used to scan the keyboard. 
Most of the work of scanning the keyboard is the responsi 
bility of the firmware including the scan sequence, key 
debouncing, and type-ahead buffer. Hardware is kept simple. 

Fig.  1 .  System block d iagram. 

Bus Definit ion 
To reduce printed circuit board area, the bus width must 

be limited. A four-bit multiplexed command and data bus 
may seem to be an extreme solution, but is necessary to 
save space. The challenge is to maintain reasonable perfor 
mance with a four-bit bus. Each 1C in the system maintains 
its own copy of the 20-bit program counter (PC) and a data 
pointer (DP) which are only broadcast on the bus when 
necessary. After a read operation to an address pointed to 
by the PC, each 1C automatically increments its copy of 
the PC. Therefore, the PC need only be updated if a branch 
is taken. In this case, the PC must be reloaded. The com 
mand LOADPC is placed on the bus followed by the five 
nibbles of the new address. The other fifteen bus commands 
include starting reads and writes to the address pointed to 

V O N  

LCD LC1 LC2 â€¢â€¢â€¢ LC91 
LCD Drivers 

Fig.  2 .  Layout  and arch i tec ture o f  d isp lay dr iver  ch ip .  
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by the PC or DP, loading the DP, and resetting and configur 
ing the system. 

Another feature of this bus definition is soft configura 
tion, which allows the memory space to be allocated as 
desired. A daisy-chain signal is routed from one 1C to the 
next. If an 1C has not yet been configured, it drives its 
daisy-out (DO) line low. When its daisy-in (Dl) line is high, 
the 1C responds to identification and configuration com 
mands which place it in the address space. Once config 
ured, the IC's DO line goes high so that the next chip in 
the chain can be configured. 

The bus consists of 10 pins: data (pins 0 to 3), CDN (signals 
if the transfer is a command or data), STRN (system strobe), 
Dl, DO, VDD, and GND. The bus supports data transfer at up 
to one megabyte/second. However, in the HP-28C the trans 
fer rate is limited to 325 kilobytes/second because of other 
limitations. 

Display Drivers 
The liquid-crystal display requires 184 drivers. Since 

there are too many pins to be driven by a single 1C, two 
identical display driver ICs (Fig. 2) are used, each driving 
92 lines. Each driver 1C also requires 20 additional pins 
for a total of 112 pins per 1C. Other system needs are also 
integrated onto the display drivers; the CPU and ROM are 
the only features that would not fit because of area limita 
tions. 

The 32-way multiplexed (see waveforms in Fig. 3) liquid- 
crystal display requires up to nine volts peak-to-peak to 
operate. This presented some difficulty since the CMOSG 
process allows only seven volts maximum because of two 
problems. First, the process' polysilicon field threshold 
runs around 12V and there would be significant sub- 
threshold conduction at nine volts. Second, although a 
p-channel transistor can handle the high electric fields pro 
duced, an n-channel FET would only last a short time 
before it was damaged. To live within these constraints, 
restricted layout rules and circuit designs were developed 
to allow nine-volt operation. The layout rule changes in 
cluded increasing the minimum gate length, increasing the 
polysilicon-to-diffusion spacing, eliminating polysilicon 
p-well crossings, and not allowing two transistors to share 
the same gate polysilicon. By making use of a supply level 
already needed for the display, VM!D (1.8V), two n-channel 

1 . 8 V  

(b) 

Fig. circuit (a) High-voltage inverter, (b) Nine-volt interface circuit 
for  supply ing display dr ivers.  

devices can be placed in series and biased to maintain a 
voltage drop of less than seven volts across each of them 
(see the high-voltage inverter in Fig. 4a). 

While the majority of the system is powered by three 
N-cell batteries (4.5V), the display drivers need nine volts. 
Therefore, an interface circuit was necessary to provide 
Â±4. 5V. The high-voltage inverter could allow a 0-to-4.5V 
logic input to produce a Â±4. 5V output, but current drains 
would be high since both the pull-up and pull-down tran 
sistors are on when the input is at ground. However, by 
incorporating two high-voltage inverters into a latch (Fig. 
4b), the full voltage swing is placed across the inputs of 
both inverters, and no dc current flows. 

â€”  -4 .5V  

Row 1 P ixe l  ON 

488 MS 

Fig.  3.  Mul t ip lexed waveforms for  
dr iv ing l iquid-crystal  d isplay.  
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B i t  2  

F ig .  5 .  S ta t i c  RAM ce l l s ,  (a )  T ra  
d i t i ona l  s t a t i c  RAM.  ( b )  HP-18C  
and HP-28C d isp lay RAM ce l l .  

Programmable Switching Supply 
The power supply uses only three discrete components 

and a 50-to-150-kHz clock signal to generate a negative 
display supply (VDREF, -4.5V) from a 2.7-to-6V input. The 
other display voltages are generated by buffering voltages 
from a resistor divider strung between VDD (4.5V) and VDREF. 
The negative supply is adjusted versus ambient tempera 
ture by comparing the voltage from a string of three parasitic 
npn transistors to the voltage from a switched capacitor 
divider driven by VDREF. A 5-bit register which directly 
varies the ratio of this divider gives the user control of the 
display contrast by altering the negative supply voltage 
with respect to VDD. 

System Funct ions 
Other features necessary to complete the system are in 

tegrated onto the display driver (see Fig. 2). A two-port 
RAM consisting of ninety-two 32-bit words is used for a 
display bit map. The read-only second port is formed by 
the addition of a second word line, a second bit line, and 
two transistors to the basic static RAM cell (see Fig. 5). 
Each display driver also provides IK bytes of system RAM. 

In the low-battery detection circuit, the supply voltage 
VDD is divided down and compared to a bandgap reference. 
The reference produces 1.3VÂ±15 mV over process vari 
ations and the operating temperature range of -30 to 

+ 75Â°C. 
Display control logic handles the display refresh and 

synchronization of multiple chips. 
A 32-bit crystal-controlled timer provides a real-time 

clock and other timing functions. 
A flexible I/O pin allows TTL-level serial communica 

tions and several other I/O possibilities. In the HP-18C and 
HP-28C Calculators, this pin drives an infrared LED trans 
mitter for sending data to an optional printer with an in 
frared receiver. The timer and I/O sections provide minimal 
hardware support for these features; as much of the com 
plexity as possible is handled by the firmware. 

512K-Bit  ROM 
The third custom 1C used in the HP-28C is a 512K-bit 

ROM. One or two ROMs in flatpack packages are soldered 
to the back of the hybrid circuit board. The ROMs are not 
bonded directly to the board for three reasons. First, by 
placing the ROMs in separate packages the HP-28C and all 
language versions of the HP-18C can be produced by simply 
loading the boards with a different ROM. Second, that 
much ROM would consume a large amount of tester mem 
ory and is best tested separately. Third, the CPU and display 
drivers require most of the room on the front of the board, 
and directly bonding chips to both sides of the board is 
not practical. 

Predecoders 

F i g .  6 .  A r c h i t e c t u r e  o f  5 1 2 K - b i t  
ROM chip.  
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Early in the development cycle it became apparent that 
a high-density CMOS process was essential to help keep 
the cost of the product at realistic levels. Hence, this ROM 
chip was designed using a third-generation CMOS process 
developed at HP's Northwest Integrated Circuits Division. 

The chip architecture (Fig. 6) consists of four 128K-bit 
quadrants, each organized in 512 rows and 256 columns. 
The data from each quadrant is read four nibbles at a time. 
Considerable design effort went into minimizing power 
supply drain by the ROM in both the operating and standby 
modes. Our design approach incorporates decoded virtual 
ground drivers so that only part of each quadrant is active 
at any time. The use of virtual ground drivers minimizes 
precharge current contribution to the operating current. 

Our choice for the ROM core cell is the so-called X core, 
where the polysilicon word line snakes around the island 
line at 45Â° angles. The traditional diffusion resistance to 
ground is not present in this design, which eliminates 
periodic ground bus lines. Data from the ROM core is 
sensed by special differential sense amplifiers that detect 
the difference between the selected cell and a dummy cell. 
The ROM is island programmable, which implies that a 
one or zero is detected by the presence of an island complet 
ing the transistor. The design calls for the ROM to operate 
from 3.0 to 5.5 volts with 200-ns access time at 65Â°C. 

The ROM interfaces to the CPU using the 4-bit data bus 
and two control lines. For proper operation, the chip needs 
only 11 pads. The chip was designed to be configurable in 
the address space of the CPU either by hard configuration 
(i.e., the address is predefined and set) or soft configuration 
(i.e, the address can be mapped anywhere in the CPU ad 
dress space). The interface of the ROM core with the CPU 
consists of a command decoder and two 20-bit program 
counter and data pointer registers. 

The CMOS process development played a key role in 
the availability of the ROMs. Some of the principal charac 
teristics of this new CMOS process are: 
â€¢ It is an n-well process, as contrasted to previous p-well 

processes. 
It uses p-type epitaxial silicon on a p + substrate instead 
of a monocrystalline silicon structure. 

â€¢ 5 x optical steppers are used for all critical lithography 
levels. 

â€¢ The metal interconnection layers (first and second) have 
a linewidth-spacing pitch of 4.0 /am. 

â€¢ The polysilicon lines are drawn 2.8 Â¿tin wide and are 
placed at least 1.2 /am apart. 
The islands that define p-channel or n-channel transistor 
widths are 2.8 /am wide. 

â€¢ The n-channel and p-channel threshold voltages are 
0.75V and symmetrical. 

â€¢ The effective size of a minimum-geometry device is 1.8 
fan wide and 1.3 /am long. 
The maximum operating voltage is 5.5V. 

ESD and EMI  Design Considerat ions 
From the very beginning of the project, the design goal 

for electrostatic discharge (ESD) protection was to elimi 
nate any breakdowns through the case with the calculator 
placed on a reference ground plane for discharges up to 
25 kV. Hence, the emphasis on sealing the product with 

an RTV compound was partly because of ESD require 
ments. However, the problem with that design philosophy 
is that any one entry point can eliminate all chances of 
success. In this case, the weak point was the battery door. 
Interestingly enough, the observed arc path was from the 
battery door to the battery case and over through the elec 
tronics to the CPU key lines. The reason for this was sim 
ple â€” the keyboard provides a larger capacitance to refer 
ence ground than anything else in the product (i.e., the 
highest charge path is through the electronics). The solu 
tion is to isolate the keyboard using a series resistance and 
to provide an alternate path for this charge with an appro 
priately placed ground plane. The keyboard-to-ground 
capacitance is reduced by inserting a grounded metal shield 
between the keyboard and the reference ground. This de 
sign at the same time provides an alternate, more desirable 
charge path to this internal ground plane because of its 
predominant capacitance to the reference ground. This 
technique has proven to be quite successful in previous 
projects.2 

Electromagnetic interference (EMI) generation was not a 
problem, mainly because of an early emphasis on proper 
printed circuit board layout. Possible RF sources are elimi 
nated by minimizing the physical loop areas created by 
the signal and ground return paths, and by laying out the 
power and ground lines first on the hybrid. This is an 
extremely quiet product, considering its speed capabilities. 

Tools 
An aggressive schedule was met with this project. Since 

the CPU was a redesign, the display driver and ROM were 
the most critical 1C designs. Three months were required 
for design, schematic entry, and simulation. Our first pro 
totypes, built six months later, were fully functional. 

The Hierarchial Custom Design System, developed at HP 
for in-house use, is a highly integrated set of tools running 
on HP 9000 Computers. The schematic capture system pro 
duces a net list which is fed to the circuit (HP Spice) or 
logic simulator. The logic simulator handles CMOS designs 
including bidirectional transmission gates and circuit 
fights created, for example, when overdriving cross- 
coupled inverters to load a latch. A high-level, Pascal-like 
language is used to develop all the test patterns. This lan 
guage can then be compiled for the logic simulator or for 
the 1C test system. Often the output of the simulator is used 
to create the production test patterns, but recompiling the 
high-level language has three benefits. First, changes in the 
test patterns can be implemented quickly, without having 
to resimulate the entire 1C. Second, the test patterns are 
well documented. Finally, the features of the language re 
duce the time required to develop test patterns for both 
simulation and production testing. 

Standard cells were used whenever possible, but some 
layout was done manually while the RAM was drawn by 
a module generator. All design rule and electrical errors 
in the layout were caught with a hierarchical design rule 
check (DRC) and schematic compare program. One error 
was caught in the module generator's work. With thousands 
of dollars of mask charges and months of debugging time 
at stake, correct by construction is a nice goal, but it can 
not beat correct by double checking. The DRC and compare 
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program ran quickly and produced concise listings of any 
errors. 
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